We report the etch characteristics of GaAs and AlGaAs in the diffusion pump-based capacitively coupled $BCl_3$ plasma. Process variables were chamber pressure ($50{\sim}180$ mTorr), CCP power ($50{\sim}200\;W$) and $BCl_3$ gas flow rate ($2.5{\sim}10$ sccm). Surface profilometry was used for etch rate and surface roughness measurement after etching. Scanning electron microscopy was used to analyze the etched sidewall and surface morphology. Optical emission spectroscopy was used in order to characterize the emission peaks of the $BCl_3$ plasma during etching. We have achieved $0.25{\mu}m$/min of GaAs etch rate with only 5 sccm $BCl_3$ flow rate when the chamber pressure was in the range of 50{\sim}130 mTorr. The etch rates of AlGaAs were a little lower than those of GaAs at the conditions. However, the etch rates of GaAs and AlGaAs decreased significantly when the chamber pressure increased to 180 mTorr. GaAs and AlGaAs were not etched with 50 W CCP power. With $100{\sim}200\;W$ CCP power, etch rates of the materials increased over $0.3{\mu}m$/min. It was found that the etch rates of GaAs and AlGaAs were not always proportional to the increase of CCP power. We also found the interesting result that AlGaAs did not etched at 2.5 sccm $BCl_3$ flow rate at 75 mTorr and 100 W CCP power even though it was etched fast like GaAs with more $BCl_3$ gas flow rates. By contrast, GaAs was etched at ${{\sim}}0.3{\mu}m$/min at the 2.5 sccm $BCl_3$ flow rate condition. A broad molecular peak was noticed in the range of $500{\sim}700\;mm$ wavelength during the $BCl_3$ plasma etching. SEM photos showed that 10 sccm $BCl_3$ plama produced more undercutting on GaAs sidewall than 5 sccm $BCl_3$ plasma.
The optical properties of the digital-alloy $(In_{0.53}Ga_{0.47}As)_{1-z}/(In_{0.52}Al_{0.48}As)_z$ grown by molecular beam epitaxy as a function of composition z (z = 0.4, 0.6, and 0.8) have been studied using temperature-dependent photoluminescence (PL) and time-resolved PL (TRPL) spectroscopy. As the composition z increases from 0.4 to 0.8, the PL peak energy of the digital-alloy $In(Ga_{1-z}Al_z)As$ is blueshifted, which is explained by the enhanced quantization energy due to the reduced well width. The decrease in the PL intensity and the broaden FWHM with increasing z are interpreted as being due to the increased Al contents in the digital-alloy $In(Ga_{1-z}Al_z)As$ because of the intermixing of Ga and Al in interface of InGaAs well and InAlAs barrier. The PL decay time at 10 K decreases with increasing z, which can be explained by the easier carrier escape from InGaAs wells due to the enhanced quantized energies because of the decreased InGaAs well width as z increases. The emission energy and luminescence properties of the digitalalloy $(InGaAs)_{1-z}/(InAlAs)_z$ can be controlled by adjusting composition z.
We present a self-consistent numerical method for calculating the conduction-band profile and subband structure of AlGaN/GaN single heterojunctions. The subband calculations take into account the piezoelectric and spontaneous polarization effect and the Hartree and exchange-correlation interaction. We calculate the dependence of electron sheet concentration and subband energies on various structural parameters, such as the width and Al mole fraction of AlGaN, the density of donor impurities in AlGaN, and the density of acceptor impurities in GaN, as well as the electron temperature. The electron sheet concentration was sensitively dependent on the Al mole fraction and width of the AlGaN layer and the doping density of donor impurities in the AlGaN. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.
We investigated the effects of high potential barriers on the optical characteristics of InAs quantum dots (QDs) by using photoluminescence (PL) and photoreflectance (PR) spectroscopy. A sample with regular InAs quantum dots on GaAs was grown by molecular beam epitaxy (MBE) as a reference. Another InAs QDs sample was embedded in single AlGaAs barriers. On the other hand, a sample with GaAs/AlGaAs superlattice barriers was adopted for comparison with a sample with a single AlGaAs layer. In results, we found that the emission wavelength of QDs was effectively tailored by using high potential barriers. Also, it was found that the optical properties of a sample with QDs embedded in GaAs/AlGaAs superlattices were better than those of a sample with QDs embedded in a single layer of AlGaAs barriers. We believe that GaAs/AlGaAs superlattice could effectively prevent the generation of defects.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2005.07a
/
pp.164-165
/
2005
The dry etch characteristics of GaAs over both AlGaAs and InGaP in planar inductively coupled $BCl_3$-based plasmas(ICP) with additions of $SF_6$ or $CF_4$ were studied. The additions of flourine gases provided enhanced etch selectivities of GaAs/AlGaAs and GaAs/InGaP. The etch stop reaction involving formation of involatile $AlF_3$ and $InF_3$ (boiling points of etch products: $AlF_3\sim1300^{\circ}C$, $InF_3$ > $1200^{\circ}C$ at atmosphere) were found to be effective under high density inductively coupled plasma condition. Decrease of etch rates of all materials was probably due to strong increase of flourine atoms in the discharge, which blocked the surface of the material against chlorine neutral adsorption. The process parameters were ICP source power (0 - 500 W), RF chuck power (0 - 30 W) and variable gas composition. The process results were characterized in terms of etch rate, selectivities of GaAs over AlGaAs and InGaP, surface morphology, surface roughness and residues after etching.
A GaN-based metal-insulator-semiconductor (MIS) structure has been fabricated by using $BaTa_2O_6$ instead of conventional oxide as insulator gate. The leakage current o) films are in order of $10^{-12}-10^{-13}A/cm^2$ for GaN on $Al_2O_3$(0001) substrate and in order of $10^{-6}-10^{-7}A/cm^2$ for GaN on GaAs(001) substrate. The leakage current of thses films is governed by space-charge-limited current over 45 MV/cm in case of GaN on $Al_2O_3$(0001) substrate and by Poole-Frenkel emission in case of GaN on GaAs(001).
O, Hyeon-Ji;Park, Seong-Jun;Kim, Min-Tae;Kim, Ho-Seong;Song, Jin-Dong;Choe, Won-Jun;Myeong, Jae-Min
Proceedings of the Materials Research Society of Korea Conference
/
2012.05a
/
pp.87.2-87.2
/
2012
고출력 반도체 레이저 다이오드는 발진 파장 및 광 출력에 따라 다양한 분야에 응용되고 있으며, 특히 발진파장이 808 nm 및 1470 nm 인 고출력 레이저 다이오드의 경우 재료가공, 펌핑용 광원 (DPSSL, 광섬유 레이저), 의료, 피부미용 (점 제거), 레이저 다이오드 디스플레이 등 가장 다양한 응용분야를 가진 광원 중의 하나라고 할 수 있다. 일례로 재료가공의 경우, 레이저 용접, 레이저 인쇄, 하드디스크의 레이저 텍스쳐링 등 그 응용분야는 무수히 많으며, 최근에는 미래 성장동력 사업의 하나로 중요한 이슈가 되는 태양전지에서 에지 분리 (edge isolation), ID 마킹, 레이저 솔더링 등에서 필수불가결한 광원으로 각광받고 있다. 808 nm 대역 In(Ga)AlAs quantum dots laser diode (QDLD) 성장을 위하여 In(Ga)AlAs QD active 와 In(Ga)AlAs QD LD 성장으로 크게 분류하여 여러 가지 test 실험을 수행하였다. 우선 In(Ga)AlAs QD LD 성장에 앞서 high power LD에 적용 가능한 GaAs/AlGaAs quantum well의 성장 및 전기 측정을 수행하여 그 가능성을 보았다. In(Ga)AlAs QD active layer의 효과적인 실험 조건 조절을 위해 QD layer는 sequential mithod (ex. n x (InGaAlAs t sec + InAs t sec + As 10 sec)를 사용하였다. In(Ga)AlAs QD active layer는 성장 온도, 각 sequence 별 시간, 각 source 양, barrier 두께 조절 및 타입변형, Arsenic flux 등의 조건을 조절하여 실험하였다. 또한 위에서 선택된 몇 가지 active layer 를 이용하여 In(Ga)AlAs QD LD 성장 조건 변화를 시도하였다.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.11
no.6
/
pp.447-452
/
1998
The selective dry etching of GaAs to Al\ulcornerGa\ulcornerAs using $BCI_3/SF_6$ gas mixture in electron cyclotron resonance(ECR) plasma is investigated. A selectivity of GaAs to AlGaAs of more than 100 and maximum etch rate of GaAs are obtained at a gas ratio $SF_6/BCI_3+SF_6$ of 25%. We verified the formation of $AlF_3$ on $Al_{0.25}Ga_{0.75}As$from the Auger spectra which enhanced the etch selectivity. In order to investigate surface damage of AlGaAs caused by ECR plasma, we performed a low temperature photoluminescence(PL) measurement as a function of RF power. As the RF power. As the RF power increases, the PL intensity decreases monotonically from 50 to 100 Wand then repidly decreases until 250 W. This behavior is due to surface damage by plasma treatment. This dry etching technique using $BCI_3/SF_6$ gas mixture in ECR plasma is suitable for gate recess formation on the GaAs based pseudomorphic high electron mobility transistor(PHEMT)
We compare electroabsorption modulators (EAMs) with multiple quantum wells (MQWs) based on InGaAs(P)/InP and InGa(Al)As/InAlAs material systems. We carefully choose the quantum-well structures so that the structures based on different material systems have similar band-offset energies and excition-peak wavelengths. Assuming the same light wavelength of $1.55{\mu}m$, we show the transfer functions of EAMs with each quantum-well structure and calculate the escape times of photogenerated charge carriers. As the heavy-hole escape time of the quantum well based on InGaAs(P)/InP is much longer than those of photogenerated charge carriers of InGa(Al)As/InAlAs, the EAM based on the InGa(Al)As/InAlAs material seems to be more suitable for high-optical-power operation.
Journal of the Korean Institute of Telematics and Electronics A
/
v.29A
no.3
/
pp.59-65
/
1992
In this paper, the Numerov method is applied to solve the Schroedinger equation for $Al_{0.3}Ga_{0.7}AS/GaAs/Al_{0.3}Ga_{0.7}As$ double-heterojunction HEMT structures. The 3 subband energy levels, corresponding wave functions, 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. In addition, 2-dimensional electron gas densities in a quantum well of double heterostructure are calculated as a function of applied gate voltage. The density in the double heterojunction quantum well is increased to about more than 90%, however, the transconductance of the double heterostructure HEMT is not improved compared to that of the single heterostructure HEMT. Thus, double-heterojunction structures are expected to be suitable to increase the current capability in a HEMT device or a power HEMT structure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.