• Title/Summary/Keyword: Al2O3 Thin Film

Search Result 584, Processing Time 0.037 seconds

Gas Barrier Properties of Nanolaminated Single Inorganic Film Deposited by Neutral Beam Assisted Sputtering Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.465-465
    • /
    • 2012
  • In this study, we developed an Al2O3 nanolaminated single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nanocrystal phase with various grain sizes and lead to the formation of a nanolaminated structure in the single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the nanolaminated Al2O3 thin films by NBAS process have improved more than 40% compared with that of conventional Al2O3 layers by the RF magnetron sputtering process under the same sputtering conditions.

  • PDF

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.

Characterization of Multiphase in $Fe_2O_3$ Thin Film by PECVD

  • Kim, Bum-Jin;Lee, Eun-Tae;Jang, Gun-Eik;Chung, Yong-Sun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.79-85
    • /
    • 1997
  • Fe$_2$O$_3$ thin films were prepared on $Al_2$O$_3$ substrate by PECVD(Plasma-Enhanced Chemical Vapor Deposition) process. The phase transformation of iron oxide film was determined as the substrate temperature and reduction-oxidation process. $\alpha$-Fe$_2$O$_3$ was stable in deposition temperature ranges of 80~15$0^{\circ}C$. Fe$_3$O$_4$ phase was obtained by the reduction process of $\alpha$-Fe$_2$O$_3$ phase in H$_2$ ambient. Fe$_3$O$_4$ phase was transformed into a ${\gamma}$-Fe$_2$O$_3$ thin film under controlled oxidation conditions at 280~30$0^{\circ}C$.

  • PDF

ZnO Piezoelectric Thin Film Fabrication and Its Application as a Flow-rate Control Microvalve (ZnO 압전박막의 제조와 유량조절밸브로서의 응용)

  • 박세광
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.66-69
    • /
    • 1989
  • After reviewing previous work done on two piezoelectric thin films(PZT, ZnO), ZnO thin piezofim of 1-3UM is fabricated by sputtering on the different substrates(i. e., P+Si/N-Si, SiO2/P+Si/ N-Si, Al/SiO2/ P+Si/ N+Si). The result shows that ZnO piezofilm on the Al has the best c-axis orientation. One of applications for the ZnO piezofilm as an microvalve to control liquid flow is introduced, and which can be controlled electrically and remotely.

  • PDF

Interface properties of $Al_{2}O_{3}$ thin film using ALD method on metal film and Fabrication of MIM capacitor (금속 박막위에 ALD법으로 형성된 $Al_{2}O_{3}$ 박막의 계면 특성과 MIM capacitor의 제조)

  • 남상완;고성용;정영철;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1061-1064
    • /
    • 2003
  • In this paper, we deposited A1$_2$O$_3$ thin film using atomic layer deposition(ALD) method on Ti and fabricated metal-insulator-metal(MIM) capacitor. In the result of this study, the typical deposition rate was about 1.12$\AA$/cycle. About 30 nm of Ti was consumed during deposition and TiO$_{x}$ was formed at the interface of A1$_2$O$_3$ and Ti. Its surface roughness was 1.54nm. The leakage current density was 1.5 nA/$\textrm{cm}^2$. The temperature coefficient of capacitance(TCC) of MIM capacitor was 41 ppm/$^{\circ}C$ at 1MHz and 100 ppm/$^{\circ}C$ at 100 kHz.z.

  • PDF

Analysis on the Field Effect Mobility Variation of Tin Oxide Thin Films with Oxygen Partial Pressure (산소 분압에 따른 산화주석 박막의 전계효과 이동도 변화 분석)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • Bottom-gate tin oxide ($SnO_2$) thin film transistors (TFTs) were fabricated on $N^+$ Si wafers used as gate electrodes. 60-nm-thick $SnO_2$ thin films acting as active layers were sputtered on $SiO_2/Al_2O_3$ films. The $SiO_2/Al_2O_3$ films deposited on the Si wafers were employed for gate dielectrics. In order to increase the resistivity of the $SnO_2$ thin films, oxygen mixed with argon was introduced into the chamber during the sputtering. The mobility of $SnO_2$ TFTs was measured as a function of the flow ratio of oxygen to argon ($O_2/Ar$). The mobility variation with $O_2/Ar$ was analyzed through studies on crystallinity, oxygen binding state, optical properties. X-ray diffraction (XRD) and XPS (X-ray photoelectron spectroscopy) were carried out to observe the crystallinity and oxygen binding state of $SnO_2$ films. The mobility decreased with increasing $O_2/Ar$. It was found that the decrease of the mobility is mainly due to the decrease in the polarizability of $SnO_2$ films.

Effect of Gate Dielectrics on Electrical Characteristics of a-ITGZO Thin-Film Transistors (게이트 절연막 조성에 따른 a-ITGZO 박막트랜지스터의 전기적 특성 연구)

  • Kong, Heesung;Cho, Kyoungah;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.501-505
    • /
    • 2021
  • In this study, we fabricated amorphous indium-tin-gallium-zinc-oxide thin-film transistors (a-ITGZO TFTs) with gate dielectrics of HfO2 and the mixed layers of HfO2 and Al2O3, and investigated the effect of gate dielectric on electrical characteristics of a-ITGZO TFTs. When only HfO2 was used as the gate dielectric, the mobility and subthreshold swing (SS) were 32.3 cm2/Vs and 206 mV/dec. For the a-ITGZO TFTs with gate dielectric made of HfO2 and Al2O (2:1, 1:1), the mobilities and SS were 26.4 cm2/Vs (2:1), 16.8 cm2/Vs(1:1), 160 mV/dec (2:1) and 173 mV/dec (1:1). On the other hand, the hysteresis window shown in transfer curves of the a-ITGZO TFTs was lessened from 0.60 to 0.09 V by the increase of Al2O3 ratio in gate dielectric, indicating that the interface trap density between the gate dielectric and channel layer decreases due to Al2O3.

Electrical and optical properties of Al and F doped ZnO transparent conducting film by sol-gel method (Sol-gel법에 의한 Al과 F가 첨가된 ZnO 투명전도막의 전기 및 광학적 특성)

  • Lee, Seung-Yup;Lee, Min-Jae;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • Al-doped and F-doped ZnO (ZnO : Al & ZnO : F) thin films were coated onto glass substrate by sol-gel method. These films showed c-axis orientation in common, but different I(002)/[I(002) + I(101)] and FWHM (full width at half-maximum). In particular, the grain size of the ZnO : Al films decreased with the increase in the Al-doping concentration, while for the ZnO : F films the grain siae increased up to F 3 at% and then decreased. For the electrical properties, Hall effect measurement was used. The resistivity of the ZnO : Al films and the ZnO : F films were, respectively, $2.9{\times}10^{-2}{\Omega}cm$ at Al 1 at% and $3.3{\times}10^{-1}{\Omega}cm$ at F 3 at%. Moreover compared with ZnO:Al films, ZnO:F films have lower carrier concentration (ZnO : Al $4.8{\times}10^{18}cm^{-3}$, ZnO : F $3.9{\times}10^{16}cm^{-3}$) and higher mobility (ZnO : Al $45cm^2/Vs$, ZnO : F $495cm^2/Vs$). For average optical transmittances, ZnO : Al thin films have $86{\sim}90%$ and ZnO : F films have $77{\sim}85%$ comparatively low.