• 제목/요약/키워드: Al2O3 Thin Film

검색결과 584건 처리시간 0.035초

CrAlMgSiN 박막의 600-900℃에서의 대기중 산화 (Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air)

  • 원성빈;;황연상;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과 (Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition)

  • 김기락;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

(Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향 (Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer)

  • 양소현;배진아;송유진;전찬욱
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.

결정질 실리콘 태양전지의 패시베이션 적용을 위한 Al2O3/SiON 적층구조의 열적 안정성에 대한 연구 (A Study on the Thermal Stability of an Al2O3/SiON Stack Structure for c-Si Solar Cell Passivation Application)

  • 조국현;장효식
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.197-200
    • /
    • 2014
  • We investigated the influence of blistering on $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks passivation layers. $Al_2O_3$ film provides outstanding Si surface passivation quality. $Al_2O_3$ film as the rear passivation layer of a p-type Si solar cell is usually stacked with a capping layer, such as $SiO_2$, SiNx, and SiON films. These capping layers protect the thin $Al_2O_3$ layer from an Al electrode during the annealing process. We compared $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks through surface morphology and minority carrier lifetime after annealing processes at $450^{\circ}C$ and $850^{\circ}C$. As a result, the $Al_2O_3$/SiON stacks were observed to produce less blister phenomenon than $Al_2O_3$/SiNx:H stacks. This can be explained by the differences in the H species content. In the process of depositing SiNx film, the rich H species in $NH_3$ source are diffused to the $Al_2O_3$ film. On the other hand, less hydrogen diffusion occurs in SiON film as it contains less H species than SiNx film. This blister phenomenon leads to an increase insurface defect density. Consequently, the $Al_2O_3$/SiON stacks had a higher minority carrier lifetime than the $Al_2O_3$/SiNx:H stacks.

TiAIN 박막의 우선방위와 내산화성 (Oxidation Resistance and Preferred Orientation of TiAIN Thin Films)

  • 백창현;박용권;위명용
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.676-681
    • /
    • 2002
  • Microstructure, mechanical properties, and oxidation resistance of TiAIN thin films deposited on quenched and tempered STD61 tool steel by arc ion plating were studied using XRD, XPS and micro-balance. The TiAIN film was grown with the (200) orientation. The grain size of TiAIN thin film decreased with increasing Al contents, while chemical binding energy increased with Al contents. When hard coating films were oxidized at $850^{\circ}C$ in air, oxidation resistance of both TiN and TiCN films became relatively lower since the surface of films formed non-protective film such as $TiO_2$. However, oxidation resistance of TiAIN film was excellent because its surface formed protective layer such as $_A12$$O_3$ and $_Al2$$Ti_{7}$$O_{15}$, which suppressed oxygen intrusion.

Three-Dimensional Nanofabrication with Nanotransfer Printing and Atomic Layer Deposition

  • 김수환;한규석;한기복;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2010
  • We report a new patterning technique of inorganic materials by using thin-film transfer printing (TFTP) with atomic layer deposition. This method consists of the atomic layer deposition (ALD) of inorganic thin film and a nanotransfer printing (nTP) that is based on a water-mediated transfer process. In the TFTP method, the Al2O3 ALD growth occurs on FTS-coated PDMS stamp without specific chemical species, such as hydroxyl group. The CF3-terminated alkylsiloxane monolayer, which is coated on PDMS stamp, provides a weak adhesion between the deposited Al2O3 and stamp, and promotes the easy and complete release of Al2O3 film from the stamp. And also, the water layer serves as an adhesion layer to provide good conformal contact and form strong covalent bonding between the Al2O3 layer and Si substrate. Thus, the TFTP technique is potentially useful for making nanochannels of various inorganic materials.

  • PDF

Dielectric Passivation and Geometry Effects on the Electromigration Characteristics in Al-1%Si Thin Film Interconnections

  • Kim, Jin-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2001
  • Dielectric passivation effects on the EM(electromigration) have been a great interest with recent ULSI and multilevel structure tends in thin film interconnections of a microelectronic device. SiO$_2$, PSG(phosphosilicate glass), and Si$_3$N$_4$ passivation materials effects on the EM resistance were investigated by utilizing widely used Al-1%Si thin film interconnections. A standard photolithography process was applied for the fabrication of 0.7㎛ thick 3㎛ wide, and 200㎛ ~1600㎛ long Al-1%Si EM test patterns. SiO$_2$, PSG, and Si$_3$N$_4$ dielectric passivation with the thickness of 300 nm were singly deposited onto the Al-1%Si thin film interconnections by using an APCVD(atmospheric pressure chemical vapor deposition) and a PECVD(plasma enhanced chemical vapor deposition) in order to investigate the passivation materials effects on the EM characteristics. EM tests were performed at the direct current densities of 3.2 $\times$ 10$\^$6/∼4.5 $\times$ 10$\^$6/ A/cm$^2$ and at the temperatures of 180 $\^{C}$, 210$\^{C}$, 240$\^{C}$, and 270$\^{C}$ for measuring the activation energies(Q) and for accelerated test conditions. Activation energies were calculated from the measured MTF(mean-time-to-failure) values. The calculated activation energies for the electromigration were 0.44 eV, 0.45 eV, and 0.50 eV, and 0.66 eV for the case of nonpassivated-, Si$_3$N$_4$passivated-, PSG passivated-, and SiO$_2$ passivated Al-1%Si thin film interconnections, respectively. Thus SiO$_2$ passivation showed the best characteristics on the EM resistance followed by the order of PSG, Si$_3$N$_4$ and nonpassivation. It is believed that the passivation sequences as well as the passivation materials also influence on the EM characteristics in multilevel passivation structures.

  • PDF

MOCVD법을 이용한 Bi-2212계 초전도박막 제조 및 특성에 관한 연구 (Preparation and Characterization of Bi-Sr-Ca-Cu-O Superconductor Thin Film by Metal Organic Chemical Vapor Deposition)

  • 장건익;김호인;박인길;김호기
    • 한국세라믹학회지
    • /
    • 제31권10호
    • /
    • pp.1123-1132
    • /
    • 1994
  • Bi-Sr-Ca-Cu-O superconductor thin films were prepared on MgO and LaAlO3 substrates by MOCVD technique. The films deposited on MgO and LaAlO3 substrates became superconducting at 64 K and 70 K respectively. The measured critical current density of thin film deposited on LaAlO3 substrate was around 104 A/$\textrm{cm}^2$. After annealing at $700^{\circ}C$ for 3 hours, the critical transition temperature(Tc) of films deposited on LaAlO3 was changed from 70 K to 74 K.

  • PDF

보호용 실리콘 산화막을 이용하여 제조된 $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$ 에피텍시의 성장에 미치는 영향 (Effect of $Al_2O_3$ pre-layers formed using protective Si-oxide layer on the growth of ultra thin ${\gamma}-Al_2O_3$ epitaxial layer)

  • 정영철;전본근;석전성
    • 센서학회지
    • /
    • 제9권5호
    • /
    • pp.389-395
    • /
    • 2000
  • 본 논문에서는 보호용 실리콘 산화층과 Al 층을 이용한 $Al_2O_3$ 예비층의 형성을 제안하였다. 실리콘 기판 위의 보호용 산화막 위에 알루미늄을 증착하고 이를 $800^{\circ}C$에서 열처리함으로써 에피텍시 $Al_2O_3$ 예비층 형성시킬 수 있었다. 그리고 형성된 $Al_2O_3$ 예비층위에 ${\gamma}-Al_2O_3$ 층을 형성하였다. ${\gamma}-Al_2O_3$막 성장시 공정의 초기 상태에서 발생하는 $N_2O$ 가스에 의한 Si 기판의 식각을 $Al_2O_3$ 예비층을 이용함으로써 방지할 수 있었다. $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$의 표면의 형태를 개선하는데 많은 효과가 있었다.

  • PDF

Ti 첨가 Al2O3 코팅층의 두께와 열처리 조건이 LiCoO2 양극 박막의 미세구조와 전기화학적 특성에 미치는 영향 (Effect of Ti-Doped Al2O3 Coating Thickness and Annealed Condition on Microstructure and Electrochemical Properties of LiCoO2 Thin-Film Cathode)

  • 최지애;이성래;조원일;조병원
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.447-451
    • /
    • 2007
  • We investigated the dependence of the various annealing conditions and thickness ($6\sim45nm$) of the Ti-doped $Al_2O_3$ coating on the electrochemical properties and the capacity fading of Ti-doped $Al_2O_3$ coated $LiCoO_2$ films. The Ti-doped-$Al_2O_3$-coating layer and the cathode films were deposited on $Al_2O_3$ plate substrates by RF-magnetron sputter. Microstructural and electrochemical properties of Ti-doped-$Al_2O_3$-coated $LiCoO_2$ films were investigated by transmission electron microscopy (TEM) and a dc four-point probe method, respectively. The cycling performance of Ti-doped $Al_2O_3$ coated $LiCoO_2$ film was improved at higher cut-off voltage. But it has different electrochemical properties with various annealing conditions. They were related on the microstructure, surface morphology and the interface condition. Suppression of Li-ion migration is dominant at the coating thickness >24.nm during charge/discharge processes. It is due to the electrochemically passive nature of the Ti-doped $Al_2O_3$ films. The sample be made up of Ti-doped $Al_2O_3$ coated on annealed $LiCoO_2$ film with additional annealing at $400^{\circ}C$ had good adhesion between coating layer and cathode films. This sample showed the best capacity retention of $\sim92%$ with a charge cut off of 4.5 V after 50 cycles. The Ti-doped $Al_2O_3$ film was an amorphous phase and it has a higher electrical conductivity than that of the $Al_2O_3$ film. Therefore, the Ti-doped $Al_2O_3$ coated improved the cycle performance and the capacity retention at high voltage (4.5 V) of $LiCoO_2$ films.