• Title/Summary/Keyword: Al2O3 박막

Search Result 632, Processing Time 0.023 seconds

Annealing Characteristics of Pt-Co Alloy thin Films for RTD Temperature Sensors (RTD용 Pt-Co 합금박막의 열처리 특성)

  • Hong, Seog-Woo;Seo, Jeong-Hwan;No, Sang-Soo;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1349-1351
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_2O_3$ substrates by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : $4.4 W/cm^2$. Co:6.91W/$cm^2$. working vacuum of 10 mTorr and annealing conditions of $1000^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively. The TCR value of Pt-Co alloy thin films was measured with various thickness of thin films and annealing conditions. The optimum TCR value is gained under conditions $3000{\AA}$ of thin films thickness and $1000^{\circ}C$ of annealing temperature. These results indicate that Pt-Co alloy thin films have potentiality for the high resolution RTD temperature sensors.

  • PDF

Fabrication of Pt-Co Alloy Thin Films RTD Temperature Sensors (Pt-Co 합금박막 측온저항체 온도센서의 제작)

  • 홍석우;서정환;정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.431-434
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on Al$_2$O$_3$ substrate by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the Al$_2$O$_3$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : 4.4 W/$\textrm{cm}^2$, Co : 6.91 W/$\textrm{cm}^2$, working vacuum on and annealing conditions of 1000 $^{\circ}C$ and 60 min, the resistivity and the sheet resistive thin films were 15 ${\mu}$$\Omega$$.$cm and 0.5 $\Omega$/$\square$, respectively. The TCR value of Pt-Co a films was measured with various thickness of thin films and annealing temperature. T TCR value is gained under condition 3000${\AA}$ of thin films thickness and 1000$^{\circ}C$ of temperature. These results indicate that Pt-Co alloy thin films have potentiality for the wide temperature ranges.

  • PDF

Fabrication of Ultra thin Films with (N-docosyl pyridinium)-TCNQ(1:2) Complex by Langmuir-Blodgett(LB) Technique (Langmuir-Blodgett(LB)법을 이용한 (N-docosyl pyridinium)-TCNQ(1:2) 착체의 초박막 제작)

  • Shon, Byoung-Chung;Jeong, Soon-Wook;Shon, Tae-Won;Kang, Hun;Kang, Dou-Yol
    • Electrical & Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.303-310
    • /
    • 1988
  • 본 논문에서는 Langmuir-Blodgett법으로 유기초박막을 제작하기 위하여 시료인 (N-docosyl pyridinium)-TCNQ(1:2) 작제를 합성하고 이를 초박막으로 제작한 다음, U.V측정, capacitance측정, 그리고 기판과 수직한 방향의 도전율등을 측정하여 막이 잘 이루어지고 있음을 확인하였다. 한편, 하부 전극을 Al로 할 경우 전극표면에 생기는 자연 산화막(Al$_{2}$O$_{3}$)의 두께는 37.1.angs.정도이었으며 기관과 수직한 방향의 도전율은 약 $10^{-14}$S/cm로 양호한 절연성이었다.

  • PDF

Characterization of AlN Thin Films Grown by Pulsed Laser Deposition with Various Nitrogen Partial Pressure (다양한 질소분압에서 펄스레이저법으로 성장된 AlN박막의 특성)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • Aluminum nitride (AlN) is used by the semiconductor industry, and is a compound that is required when manufacturing high thermal conductivity. The AlN films with c-axis orientation and thermal conductivity characteristic were deposited by using the Pulsed Laser Deposition (PLD). The AlN thin films were characterized by changing the deposition conditions. In particular, we have researched the AlN thin film deposited under optimal conditions for growth atmosphere. The epitaxial AlN films were grown on sapphire ($c-Al_2O_3$) single crystals by PLD with AlN target. The AlN films were deposited at a fixed temperature of $650^{\circ}C$, while conditions of nitrogen ($N_2$) pressure were varied between 0.1 mTorr and 10 mTorr. The quality of the AlN films was found to depend strongly on the $N_2$ partial pressure that was exerted during deposition. The X-ray diffraction studies revealed that the integrated intensity of the AlN (002) peak increases as a function the corresponding Full width at half maximum (FWHM) values decreases with lowering of the nitrogen partial pressure. We found that highly c-axis orientated AlN films can be deposited at a substrate temperature of $650^{\circ}C$ and a base pressure of $2{\times}10^{-7}Torr$ in the $N_2$ partial pressure of 0.1 mTorr. Also, it is noted that as the $N_2$ partial pressure decreased, the thermal conductivity increased.

Characteristics of ZnO Thin Film for SMR-typed FBAR Fabrication (FBAR 소자제작을 위한 ZnO 박막 증착 및 특성)

  • Shin, Young-Hwa;Kwon, Sang-Jik;Kim, Hyung-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.159-163
    • /
    • 2005
  • This paper gives characterization of ZnO thin film deposited by RF magnetron sputtering method, which is concerned in deposition process and device fabrication process, to fabricate solidly mounted resonator(SMR)-type film bulk acoustic resonator(FBAR). A piezoelectric layer of 1.1${\mu}{\textrm}{m}$ thick ZnO thin films were grown on thermally oxidized SiO$_2$(3000 $\AA$)/Si substrate layers by RF magnetron sputtering at the room temperature. The highly c-axis oriented ZnO thin film was obtained at the conditions of 265 W of RF power, 10 mtorr of working pressure, and 50/50 of Ar/O$_2$ gas ratio. The piezoelectric-active area was 50 ${\mu}{\textrm}{m}$${\times}$50${\mu}{\textrm}{m}$, and the thickness of ZnO film and Al-3 % Cu electrode were 1.4 ${\mu}{\textrm}{m}$ and 180${\mu}{\textrm}{m}$, respectively. Its series and parallel frequencies appeared at 2.128 and 2.151 GHz, respectively, and the qualify factor of the resonator was as high as 401.8$\pm$8.5.

Effect of Variation of Substrate Temperature and Oxygen Gas Flow of the ZnO Thin Films Deposited on Sapphire (사파이어 기판 위에 증착된 ZnO 박막의 기판온도와 산소 가스량에 따른 특성)

  • Kim, Jae-Hong;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.652-655
    • /
    • 2005
  • ZnO thin films on (001) $Al_2O_3$ substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters, such as oxygen gas flow, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $300\~450^{\circ}C$ and oxygen gas flow rate of $100\~900$ sccm. We investigated the structural and optical properties of ZnO thin films using X-ray diffraction(XRD) and photoluminescence(PL).

Fabrication of c-axis Oriented $LiNbO_3$ Thin Film by PLD (C축으로 배향된 $LiNbO_3$ 박막의 PLD 증착 조건 연구)

  • Kim, Hyun-Jun;Kim, Dal-Young;Kim, Sang-Jong;Kang, Chong-Yun;Sung, Man-Young;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.397-398
    • /
    • 2005
  • Ferroelectric Lithium niobate ($LiNbO_3$) thin films are fabricated on $Al_2O_3$(0001) substrate using Pulsed Laser Deposition (PLD). The various deposition conditions such as substrate temperature, oxygen pressure, and post annealing condition are investigated to deposite c-axis oriented $LiNbO_3$ thin films. Highly c-axis oriented thin films are obtained under the conditions of working pressure of 100 mTorr, deposition for 10 min at $450^{\circ}C$, and in-situ annealing for 40 min. The $LiNbO_3$ thin films are chemically etched after electric poling and the etched configurations are studied by scanning electron microscope (SEM).

  • PDF

박막 태양전지 응용을 위하여 유리 습식 식각을 이용하여 Multi-Scale Architecture의 haze 효과

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Cho, Jaehyun;Park, Cheolmin;Kim, Hyunhoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.161.1-161.1
    • /
    • 2016
  • 박막 태양전지의 광 산란을 위한 텍스쳐 된 표면은 반사 손실을 감소시키기 위한 것이다. 그러나, 투명한 전극(TCO)의 텍스쳐 된 표면은 빛의 가용성을 제한하고, 장파장 영역에서 haze의 수치를 감소시키며, 전반사의 증가는 박막 태양전지의 Jsc를 감소시킨다. 본 논문에서는 높은 빛의 가용성을 위하여 HF+HCl 혼합용액을 이용하여 표면의 질을 향상시키기 위한 해결책을 제시했다. 같은 HF+HCl 혼합용액을 사용하여, 540 nm의 파장에서 약 85 %의 높은 haze 수치를 달성했으며, ZnO:Al 막의 증착 후에 식각된 유리 기판과 함께 비교했을 때, 2.3%의 haze 수치의 감소를 얻었다. 또, 깊은 습식 식각에 의하여 Haze 수치를 증가시키기 위한 메커니즘 간단히 설명했다. 텍스쳐 된 유리 기판의 haze 수치의 측면에서 광학 이득은 일반적인 Asahi FTO 유리(${\lambda}=540nm$의 13.5%)에 비해 상당히 높다. 이러한 높은 haze 수치의 AZO 박막은 박막 태양전지의 Jsc를 개선하는데 이용할 수 있다.

  • PDF

A Study on Electrical Properties of $Ta_2O_{5-x}$ Thin-films Obtained by $O_2$ RTA ($O_2$RTA 방법으로 제조된 $Ta_2O_{5-x}$ 박막의 전기적 특성)

  • Kim, In-Seong;Song, Jae-Seong;Yun, Mun-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.340-346
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and integration of passive devices requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. common capacitor materials, $Al_2O_3$, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$, TaN and et al., used until recently have reached their physical limits in their application to integration of passive devices. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism. This study presents the dielectric properties $Ta_2O_{5}$ MIM capacitor structure Processed by $O_2$ RTA oxidation. X-ray diffraction patterns showed the existence of amorphous phase in $600^{\circ}C$ annealing under the $O_2$ RTA and the formation of preferentially oriented-$Ta_2O_{5}$ in 650, $700^{\circ}C$ annealing and the AES depth profile showed $O_2$ RTA oxidation effect gives rise to the $O_2$ deficientd into the new layer. The leakage current density respectively, at 3~1l$\times$$10_{-2}$(kV/cm) were $10_{-3}$~$10_{-6}$(A/$\textrm{cm}^2$). In addition, behavior is stable irrespective of applied electric field. the frequency vs capacitance characteristic enhanced stability more then $Ta_2O_{5}$ thin films obtained by $O_2$ reactive sputtering. The capacitance vs voltage measurement that, Vfb(flat-band voltage) was increase dependance on the $O_2$ RTA oxidation temperature.

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.