• Title/Summary/Keyword: Al2O3/R2O

Search Result 517, Processing Time 0.032 seconds

A Study of Micro De-burring Characteristics using Polymer and $Al_2O_3$ Abrasive (폴리머와 산화알루미나 연마재를 이용한 마이크로 버 제거 특성에 관한 연구)

  • Sohn, Jong-In;Lee, Jeong-Won;Kim, Jun-Ki;Yoon, Gil-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.578-584
    • /
    • 2011
  • In mechanical cutting process, burr was generated at workpiece by cutting tool generally. It is working disturbance during manufacturing process. Besides burr was taken shape relatively large size more micro scale machining than macro scale machining. Many researches have been studied to remove micro burr(de-burring), because it was negative effect for accuracy of machining shape. However, micro de-burring was constrained by burr height, micro feature and so on. In this paper, experimental research was carried out to compare de-burring characteristics of $Al_2O_3$ abrasive and polymer.

Redox Property of the Supported Fe2O3 and WO3 with TPO/TPR (TPO/R를 이용한 [Fe2O3, WO3]/지지체의 산화, 환원 특성 연구)

  • Kim, Jae-Ho;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Young-Ho;Kim, Chang-Hee;Cho, Won-Chul;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both $CO_2$ capture and hydrogen production. In this study, redox property of $Fe_2O_3$ and $WO_3$ supported with $ZrO_2$ and $MgAl_2O_4$ were studied with temperature programmed oxidation/reduction (TPO/R) experiment. All metal oxides were prepared by ball mill method. Metal oxides supported with $ZrO_2$ showed the good redox property in TPO and TPR tests. Reduction behavior was matched well the theoretical reduction mechanism. Metal oxides supported with $MgAl_2O_4$ formed a solid solution ($MgFe_{0.6}Al_{1.4}O_4$, $MgWO_4$). $Fe_2O_3$ showed more narrow reaction range and lower reaction temperature than $WO_3$.

The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles (기계적합금화된 분산형 Al-4Mg기 합금의 피로거동)

  • Pyun, J.W.;Cho, J.S.;Kwun, S.I.;Jo, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

Preparation of Al@Fe2O3 Core-Shell Composites Using Amphiphilic Graft Copolymer Template

  • Patel, Rajkumar;Kim, Sang Jin;Kim, Jin Kyu;Park, Jung Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.209-213
    • /
    • 2014
  • A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare $Al@Fe_2O_3$ core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of $Fe_2O_3$. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of $Al@Fe_2O_3$ core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

The Crystal Structure of Fully Dehydrated Fully $Ba^{2+}$-Exchanged Zeolite X

  • 장세복;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.248-251
    • /
    • 1995
  • The crystal structure of Ba46-X, Ba46Al92Si100O384 [a= 25.297(1) Å], has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd&bar{3}at 21(1) ℃. The crystal was prepared by ion exchange in flowing stream of 0.05 M Ba(OH)2 aqueous solution for 5 days. The crystal was then dehydrated at 380 ℃ and 2 × 10-6 Torr for 2 days. The structure was refined to the final error indices R1= 0.051 and Rw= 0.054 with 369 reflections for which I > 3σ(I). In this structure, all Ba2+ ions are located at the three different crystallographic sites: fourteen Ba2+ ions are located at site Ⅰ, the centers of the double six rings, two Ba2+ ions lie at site Ⅰ', in the sodalite cavity opposite double six rings(D6R's) and another thirty Ba2+ ions are located at site Ⅱ in the supercage. Two Ba2+ ions are recessed ca. 0.27 Å into the sodalite cavity from their three O(3) oxygen plane and thirty Ba2+ ions are recessed ca. 1.11 Å into the supercage from their three O(2) oxygen planes, respectively (Ba(1)-O(3) = 2.76(1) Å, O(3)-Ba(1)-O(3) = 180(0)°, Ba(2)-O(3) = 2.45(1) Å, O(3)-Ba(2)-O(3) = 108(1)°, Ba(3)-O(2)=2.65(1) Å, and O(2)-Ba(3)-O(2)=103.9(4)°).

First-Principle Calculation Study of Cu Adsorption on X-doped (X=Ru, P, Si) 𝛾-Al2O3 (X-doped (X=Ru, P, Si) 𝛾-Al2O3 상의 Cu 흡착 제일원리 계산 연구)

  • LEE, EUNHYE;JI, HYUNJIN;CHOI, EUNYEONG;LEE, JUNGHUN;CHO, JANGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • Copper (Cu)-based catalysts have been widely used in a methanol steam reforming (MSR) reaction for hydrogen production for air-independent propulsion (AIP) applications and their good catalytic activities have attracted much attention. However, the agglomeration of the catalytic active site Cu causes deteriorating the catalytic performance and suppression of Cu agglomeration is a crucial issue in the AIP applications that the MSR system is typically operated at 250-300℃ for a long time. R. Sakai et al. recently showed a computational study on the anchoring effect that reduces an agglomeration of active sites by doping in a supporter. In order to present the anchoring effect on 𝛾-Al2O3 supported Cu-based catalysts, in this study, the adsorption energies of Cu on X-doped (X=ruthenium, phosphorus, silicon) 𝛾-Al2O3 were calculated and Cu adsorption energy decreased due to a change of the electronic structure originated from doping, thereby proving the anchoring effect.

The X-Ray Fluorescent Spectrographic Analysis of Silicate Minerals (X線螢光分析에 依한 珪酸鹽鑛物의 分析)

  • Chan Kuk Kim;Ki Nam Sang;Hwang Am Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.49-55
    • /
    • 1969
  • X-ray Fluorescence Spectrographic method has been applied for the rapid determination of main components, such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO, MgO and $K_2O$ in Silicate Minerals. In this method, Boric Acid was used as a binder after fusion with Lithium Tetraborate in the briquet-making process. The Lithium Flubride, Ammonium di-Hydrogen Phosphate and Ethylene Diamine d-Tartrate crystals were used with Scintillation counter and Gas Flow counter as the detectors. Several influences on this method were discussed, including the particle size of samples and reducing of the matrix effects by dilution with Boric Acid and addition of Lanthanum Oxide with the diluent. In order to test the reproducibility of this method described above, the determination of the same kind of samples were carried out repeatedly, and the results obtained were presented in the table. Calibration curves for each element were presented, and the application of the method was tested with International Rock Standard T-Ⅰ. All the results obtained by X-Ray Fluorescence Spectrographic method were compared with the results by conventional chemical method.

  • PDF

The Residual Stress Effect on Microstructure and Optical Property of ZnO Films Produced by RF Sputtering (R.F Sputtering으로 제조한 ZnO박막의 미세구조와 광학적 특성에 미치는 잔류응력의 영향)

  • Ryu, Sang;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.144-149
    • /
    • 2005
  • ZnO films were produced on the Si(100) and sapphire(0001) wafers by RF magnetron sputtering in terms of processing variables such as substrate temperature and RF power. The stress in films was obtained from the Stoney's formula using a laser scanning device. The stress levels in the films showed the range from $\~40$ MPa to $\~-1100$MPa depending on processing variables. The specimens were thermally cycled from R.T. to $250^{\circ}C$ to investigate the stress variation as a function of temperature. SEM was employed to characterize the microstructure of te films. As the substrate temperature increased, the film surface became rougher and the films showed coarser grains. The optical property o the films was studied by PL measurements. At the highest substrate temperature $800^{\circ}C$ the film exhibited sharper UV peaks unlike other conditions.

The Influence of MnO doped on the Radiation Properties of Far-Infrared in Semiconduction PTC Thermistor. (반도성 PTC 서미스터의 원적외선 방사특성에 미치는 MnO의 영향)

  • Song, M.J.;Cho, H.S.;Jang, S.H.;Park, C.B.;Kim, C.H.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.204-208
    • /
    • 1991
  • In this paper, the radiation properties of a far-Infrared using a PTC thermistor, the $BaTiO_3$+1.63mol% $Al_2O_3$+3.75mol% $SiO_2$+1.25mol% $TiO_2$(1/3 $Al_2O_3+xSiO_2$+(1-x) $TiO_2$; total x: 6.67mol%) ceramics, in order to progress the grade resistivity characteristics, by adding an ethanol solution of $Mn(NO_3){\cdot}6H_2O$ was investigated. The ceramics was fabricated by wet-mill method. The sintering temperature read 1300-1350$[^{\circ}C]$ and the holding time was 3 hours. The quantity of $Sb_2O_3$ and $Al_2O_3$ for an activation of the far-infrared radiation in ceramics was doped. In sintering, R-T property was measured by varying the grade temperature. The anatase-lighting apparatus and microstructures by using XRD and SEM were observed. $Sb_2O_3$. oxides additive. affected the semiconducting and emissivity and MnO was devoted an increase of resistivity. The specimen which only $Sb_2O_3$ is added to was high appeared far-infrared emissivity and Mno was not affacted the far-infrared radiation. The ceramics shows that it is effective in the structure of the human bodies as organic bodies and can be applied as electron device.

  • PDF