Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.1.105

First-Principle Calculation Study of Cu Adsorption on X-doped (X=Ru, P, Si) 𝛾-Al2O3  

LEE, EUNHYE (Agency for Defense Development)
JI, HYUNJIN (Agency for Defense Development)
CHOI, EUNYEONG (Agency for Defense Development)
LEE, JUNGHUN (Agency for Defense Development)
CHO, JANGHYEON (Agency for Defense Development)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.1, 2022 , pp. 105-112 More about this Journal
Abstract
Copper (Cu)-based catalysts have been widely used in a methanol steam reforming (MSR) reaction for hydrogen production for air-independent propulsion (AIP) applications and their good catalytic activities have attracted much attention. However, the agglomeration of the catalytic active site Cu causes deteriorating the catalytic performance and suppression of Cu agglomeration is a crucial issue in the AIP applications that the MSR system is typically operated at 250-300℃ for a long time. R. Sakai et al. recently showed a computational study on the anchoring effect that reduces an agglomeration of active sites by doping in a supporter. In order to present the anchoring effect on 𝛾-Al2O3 supported Cu-based catalysts, in this study, the adsorption energies of Cu on X-doped (X=ruthenium, phosphorus, silicon) 𝛾-Al2O3 were calculated and Cu adsorption energy decreased due to a change of the electronic structure originated from doping, thereby proving the anchoring effect.
Keywords
First-principle calculation; ${\gamma}-Al_2O_3$; Cu; Methanol steam reforming;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Sakai, K. Murakami, Y. Mizutani, Y. Tanaka, S. Hayashi, A. Ishikawa, T. Higo, S. Ogo, H. Tsuneki, H. Nakai, and Y. Sekine, "Agglomeration suppression of a Fe-supported catalyst and its utilization for low-temperature ammonia synthesis in an electric field", ACS Omega, Vol. 5, No, 12, 2020, pp. 6846-6851, doi: https://doi.org/10.1021/acsomega.0c00170.   DOI
2 D. Mukai, S. Tochiya, Y. Murai, M. Imori, T. Hashimoto, Y. Sugiura, and Y. Sekine, "Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3-δ catalyst", Appl. Catal., A, Vol. 453, 2013, pp. 60-70, doi: https://doi.org/10.1016/j.apcata.2012.11.040.   DOI
3 Y. Sugiura, S. Mukai, Y. Murai, S. Tochiya, and Y. Sekine, "Oxidation resistance of Ni/La0.7Sr0.3AlO3-δ catalyst for steam reforming of model aromatic hydrocarbon", Int. J. Hydrogen Energy, Vol. 38, No. 19, 2013, pp. 7822-7829, doi: https://doi.org/10.1016/j.ijhydene.2013.04.095.   DOI
4 D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, and N. Mitra, "Synthesis and characterization of sol-gel derived ZrO2 doped Al2O3 nanopowder", Ceram. Int., Vol. 33, No. 7, 2007, pp. 1275-1282, doi: https://doi.org/10.1016/j.ceramint.2006.05.002.   DOI
5 J. Hun Kwak, L. Kovarik, and J. Szanyi, "CO2 Reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity", ACS Catal., Vol. 3, No. 11, 2013, pp. 2449-2455, doi: https://doi.org/10.1021/cs400381f.   DOI
6 L. Ao, Y.G. Yuan, Y. Tian, J. L. Nie, H. Y. Xiao, H. Chen, X. Xiang, and X. T. Zu, "Electronic and magnetic properties of C-doped α-Al2O3 by DFT calculations", Comput. Mater. Sci., Vol. 110, 2015, pp. 368-374, doi: https://doi.org/10.1016/j.commatsci.2015.08.021.   DOI
7 F. Hu, X. Wu, Y. Wang, and X. Lai, "Ultrathin γ-Al2O3 nanofibers with large specific surface area and their enhanced thermal stability by Si-doping", RSC Adv., Vol. 67, 2015, pp. 54053-54058, doi: https://doi.org/10.1039/c5ra08315j.   DOI
8 W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects", Phys. Rev., Vol. 140, No. 4A, 1965, pp. A1133, doi: https://doi.org/10.1103/PhysRev.140.A1133.   DOI
9 Richard M. Martin, "Electronic structure: basic theory and practical methods", Cambridge University Press, 2004, doi: https://doi.org/10.1017/CBO9780511805769.   DOI
10 H. M. Jang, "Density functional theory and the applications to ferroelectric and multiferroic study", Ceramist, Vol. 18, No. 1, 2015, pp.26-43, Retrieved from https://www.koreascience.or.kr/article/JAKO201517052511225.view?orgId=anpor&hide=breadcrumb,journalinfo.
11 M. Digne, P. Sautet, P. Raybaud, P. Euzen, and H. Toulhoat, "Hydroxyl groups on γ-alumina surfaces: a DFT study", J. Catal. Vol. 211, No. 1, 2002, pp. 1-5, doi: https://doi.org/10.1006/jcat.2002.3741.   DOI
12 M. Acikgoz, M. R. Khoshi, J. Harrell, A. Genova, R. Chawla, H. He, and M. Pavanello, "Tuning the electronic properties of the γ-Al2O3 surface by phosphorus doping", Phys. Chem. Chem. Phys., Vol. 27, 2019, pp. 15080-15088, doi: https://doi.org/10.1039/c9cp03105g.   DOI
13 M. Digne, P. Sautet, P. Raybaud, P. Euzenc, and H. Toulhoat, "Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces", J. Catal. Vol. 226, No. 15, 2004, pp. 54-68, doi: https://doi.org/10.1016/j.jcat.2004.04.020.   DOI
14 M. C. Valero, P. Raybaud, and P. Sautet, "Interplay between molecular adsorption and metal-support interaction for small supported metal clusters: CO and C2H4 adsorption on Pd4/γ-Al2O3", J. Catal. Vol. 247, No. 2, 2007, pp. 339-355, doi: https://doi.org/10.1016/j.jcat.2007.02.014.   DOI
15 J. Li, R. Zhang and B. Wang, "Influence of the hydroxylation of γ-Al2O3 surfaces on the stability and growth of Cu for Cu/γ-Al2O3 catalyst: A DFT study", Appl. Surf. Sci., Vol. 270, 2013, pp. 728-736, doi: https://doi.org/10.1016/j.apsusc.2013.01.139.   DOI
16 G. Paglia, A. L. Rohl, C. E. Buckley, and J. D. Gale, "Determination of the structure of γ-alumina from interatomic potential and first-principles calculations: the requirement of significant numbers of nonspinel positions to achieve an accurate structural model", Phys. Rev. B, Vol. 71, No. 22, 2005, pp. 224115, doi: https://doi.org/10.1103/PhysRevB.71.224115.   DOI
17 X. Shi, Y. Zhang, S. Zong, W. Gu, P. Ma, and N. Lu, "Interaction of ethylene with Irn (n = 1-10):from bare clusters to γ-Al2O3-supported nanoparticles", Nanomat., Vol. 9, No. 3, 2019, pp. 331, doi: https://doi.org/10.3390/nano9030331.   DOI
18 J. H. Lee, "A study of the characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x catalysts for methanol steam reforming synthesized by solution combustion process", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 209-219, doi: https://doi.org/10.7316/KHNES.2019.30.3.209.   DOI
19 J. Gu, J. Wang, and J. Leszczynski, "Structure and energetics of (111) surface of γ-Al2O3: insights from DFT including periodic boundary approach", ACS Omega, Vol. 3, No. 2, 2018, pp. 1881-1888, doi: https://doi.org/10.1021/acsomega.7b01921.   DOI
20 K. Ding, B. Chen, Z. Fang, Y. Zhang, and Z. Chen, "Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study", Phys. Chem. Chem. Phys., Vol. 16, 2014, pp. 13465-13476, doi: https://doi.org/10.1039/c4cp01350f.   DOI
21 Y. Sekine, D. Mukai, Y. Murai, S. Tochiya, Y. Izutsu, K. Sekiguchi, N. Hosomura, H. Arai, E. Kikuchi, and Y. Sugiura, "Steam reforming of toluene over perovskite-supported Ni catalysts", Appl. Catal., A, Vol. 451, 2013, pp. 160-167, doi: https://doi.org/10.1016/j.apcata.2012.11.005.   DOI
22 K. Takise, S. Manabe, K. Muraguchi, T. Higo, S. Ogo, and Y. Sekine, "Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3-δ perovskite catalyst on toluene steam reforming reaction", Appl. Catal., A, Vol. 538, 2017, pp. 181-189, doi: https://doi.org/10.1016/j.apcata.2017.03.026.   DOI
23 K. Nishida, I. Atake, D. Li, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, "Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction Catalyst preparation by adopting ''memory effect'' of hydrotalcite", Appl. Catal. A: General, Vol. 337, No. 1, 2008, pp. 48-57, doi: https://doi.org/10.1016/j.apcata.2007.11.036.   DOI
24 A. Kadari, K. Mahi, L. O. Faria, B. Saoula, and B. Adila, "Study of the physical properties of amorphous Zr doped Al2O3 powders", Chin. J. Phys., Vol. 55, No. 1, 2017, pp. 127-132, doi: https://doi.org/10.1016/j.cjph.2016.10.012.   DOI