• Title/Summary/Keyword: Al-doped

Search Result 855, Processing Time 0.038 seconds

Effect of Al Doping Concentration on Resistance Switching Behavior of Sputtered Al-doped MgOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Park, Seong-Hun;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.307-307
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of Al-doped MgOx films with increasing Al doping concentration and increasing film thickness. The Al-doped MgOx based ReRAM devices with a TiN/Al-doped MgOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 5 nm, 10 nm, and 15 nm thick Al-doped MgOx films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16 sccm, O2: 24 sccm). Micro-structure of Al-doped MgOx films and atomic concentration were investigated by XRD and XPS, respectively. The Al-doped MgOx films showed set/reset resistance switching behavior at various Al doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased with decreasing thickness of Al-doped MgOx films. Besides, the initial current of Al-doped MgOx films is increased with increasing Al doping concentration in MgOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen of Al-doped MgOx.

  • PDF

Dy co-doping effect on photo-induced current properties of Eu-doped SrAl2O4 phosphor (Eu 도핑 SrAl2O4 형광체의 광 여기 전류 특성에 대한 Dy 코-도핑 효과)

  • Kim, Sei-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • $Eu^{2+}$-doped ${SrAl_2}{O_4}$ and $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors have been synthesized by conventional solid state method. Photocurrent properties of $Eu^{2+}$ doped ${SrAl_2}{O_4}$ and $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors, in order to elucidate $Dy^{3+}$ co-doping effect, during and after ceasing ultraviolet-ray (UV) irradiation have been investigated. The photocurrent of $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors during UV irradiation was 4-times lower than that of $Eu^{2+}$-doped ${SrAl_2}{O_4}$ during UV irradiation, and 7-times higher than that of $Eu^{2+}$-doped ${SrAl_2}{O_4}$ after ceasing UV irradiation. The photocurrent results indicated that holes of charge carriers captured in hole trapping center during the UV irradiation and liberated after-glow process, and made clear that $Dy^{3+}$ of co-dopant acted as a hole trap. The photocurrent of ${SrAl_2}{O_4}$ showed a good proportional relationship to UV intensity in the range of $1{\sim}5mW/cm^2$, and $Eu^{2+}$-doped ${SrAl_2}{O_4}$ was confirmed to be a possible UV sensor.

HVPE growth of Mg-doped AlN epilayers for high-performance power-semiconductor devices (고효율 파워 반도체 소자를 위한 Mg-doped AlN 에피층의 HVPE 성장)

  • Bae, Sung Geun;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Jeon, Hunsoo;Kim, Kyoung Hwa;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • AlN is a promising material for wide band gap and high-frequency electronics device due to its wide bandgap and high thermal conductivity. AlN has advantages as materials for power semiconductors with a larger breakdown field, and a smaller specific on-resistance at high voltage. The growth of a p-type AlN epilayer with high conductivity is important for a manufacturing an AlN-based applications. In this paper, Mg doped AlN epilayers were grown by a mixed-source HVPE. Al and Mg mixture were used as source materials for the growth of Mg-doped AlN epilayers. Mg concentration in the AlN was controlled by modulating the quantity of Mg source in the mixed-source. Surface morphology and crystalline structure of AlN epilayers with different Mg concentrations were characterized by FE-SEM and HR-XRD. XPS spectra of the Mg-doped AlN epilayers demonstrated that Mg was doped successfully into the AlN epilayer by the mixed-source HVPE.

Preparation and Characterization of Al-doped ZnO Transparent Conducting Thin Film by Sol-Gel Processing (솔-젤법에 의한 Al-doped ZnO 투명전도막의 제조 및 특성)

  • Hyun, Seung-Min;Hong, Kwon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.149-154
    • /
    • 1996
  • ZnO and Al-doped ZnO thin films were prepared by sol-gel dip-coating method and electrical and optical properties of films were investigated. Using the zinc acetate dihydrate and acetylaceton(AcAc) as a chelating agent stable ZnO sol was synthesized with HCl catalyst. Adding aluminium chloride to the ZnO sol Al-doped ZnO sol could be also synthesized. As Al contents increase the crystallinity of ZnO thin film was retarded by increased compressive stress in the film resulted from the difference of ionic radius between Zn2+ and Al3+ The thickness of ZnO and Al-doped ZnO thin film was in the range of 2100~2350$\AA$. The resistivity of ZnO thin films was measured by Van der Pauw method. ZnO and Al-doped ZnO thin films with annealing temperature and Al content had the resistivity of 0.78~1.65$\Omega$cm and ZnO and Al-doped ZnO thin film post-annealed at 40$0^{\circ}C$ in vacuum(5$\times$10-5 torr) showed the resistivity of 2.28$\times$10-2$\Omega$cm. And the trans-mittance of ZnO and Al-doped ZnO thin film is in the range of 91-97% in visible range.

  • PDF

Effects of Al Doping on Sinterabllity and Microstructure in $UO_2-6wt%Gd_2O_3$ Pellets ($UO_2-6wt%Gd_2O_3$ 소결체에서 Al 첨가가 소결성 및 미세조직에 미치는 영향)

  • Baek, Jong-Hyeok;Yu, Ho-Sik;Yun, Gyeong-Ho;Kim, Hyeong-Su;Seo, Geum-Seok
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.644-649
    • /
    • 1995
  • The sinterability and the microstructure of Al doped UO$_2$-6wt%Gd$_2$O$_3$pellets, which were doped using Al(OH)$_3$, ADS(aluminium distearate), Al(OH)$_3$+ ADS mixture and sintered at 1$700^{\circ}C$ for 4h in H$_2$, atmospheres, were examined. The sintered densities of Al doped UO$_2$-6wt%Gd$_2$O$_3$pellets were more than 94% T.D.. The open porosity in ADS doped pellets was dramatically decreased. And the amounts of pores less than l${\mu}{\textrm}{m}$ and larger than 10${\mu}{\textrm}{m}$ were decreased regardless of the kinds of doped Al compounds. And the average pore size of Al doped UO$_2$-6wt%Gd$_2$O$_3$pellets was ranged between 2 and 3${\mu}{\textrm}{m}$. While grain structure of non-doped UO$_2$-6wt%Gd$_2$O$_3$pellets was revealed to be duplex type (rocks in sands), that of Al doped pellets to be uniformly equiaxid type. Especially, the grain size in ADS doped pellets was averaged to 4.6${\mu}{\textrm}{m}$.

  • PDF

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Effect of Ti-Doped Al2O3 Coating Thickness and Annealed Condition on Microstructure and Electrochemical Properties of LiCoO2 Thin-Film Cathode (Ti 첨가 Al2O3 코팅층의 두께와 열처리 조건이 LiCoO2 양극 박막의 미세구조와 전기화학적 특성에 미치는 영향)

  • Choi, Ji-Ae;Lee, Seong-Rae;Cho, Won-Il;Cho, Byung-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.447-451
    • /
    • 2007
  • We investigated the dependence of the various annealing conditions and thickness ($6\sim45nm$) of the Ti-doped $Al_2O_3$ coating on the electrochemical properties and the capacity fading of Ti-doped $Al_2O_3$ coated $LiCoO_2$ films. The Ti-doped-$Al_2O_3$-coating layer and the cathode films were deposited on $Al_2O_3$ plate substrates by RF-magnetron sputter. Microstructural and electrochemical properties of Ti-doped-$Al_2O_3$-coated $LiCoO_2$ films were investigated by transmission electron microscopy (TEM) and a dc four-point probe method, respectively. The cycling performance of Ti-doped $Al_2O_3$ coated $LiCoO_2$ film was improved at higher cut-off voltage. But it has different electrochemical properties with various annealing conditions. They were related on the microstructure, surface morphology and the interface condition. Suppression of Li-ion migration is dominant at the coating thickness >24.nm during charge/discharge processes. It is due to the electrochemically passive nature of the Ti-doped $Al_2O_3$ films. The sample be made up of Ti-doped $Al_2O_3$ coated on annealed $LiCoO_2$ film with additional annealing at $400^{\circ}C$ had good adhesion between coating layer and cathode films. This sample showed the best capacity retention of $\sim92%$ with a charge cut off of 4.5 V after 50 cycles. The Ti-doped $Al_2O_3$ film was an amorphous phase and it has a higher electrical conductivity than that of the $Al_2O_3$ film. Therefore, the Ti-doped $Al_2O_3$ coated improved the cycle performance and the capacity retention at high voltage (4.5 V) of $LiCoO_2$ films.

Synthesis of NiO-doped Al2O3 Powder by Spray Pyrolysis (분무열분해법에 의한 NiO 첨가 Al2O3 분체의 합성)

  • 박정현;조경식;김한태
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.593-602
    • /
    • 1991
  • Al2O3 and NiO-doped Al2O3 powders were prepared from the ethanol solution of Al (NO3)3$.$9H2O and Ni(NO3)2$.$6H2O by spray pylolysis method using two-fluid nozzle. As a result of spraying test with 0.3 mol/{{{{ iota }} concentration starting solution, mean droplet sizes varied with 8.99∼9.69$\mu\textrm{m}$ and those standard deviation were 4.57∼5.12. As-prepared powders which were synthesized at 1000$^{\circ}C$ have spherical shape, sizes of 0.1∼3.0$\mu\textrm{m}$ and specific surface area of 22.34∼24.20㎡/g. Most powders consisted of {{{{ gamma }}-Al2O3 phase and transforned into ${\alpha}$-A;2O3 phase by calcination at 1100$^{\circ}C$ for 1 hr. NiO-doped Al2O3 sintered bodies had better sinterability than those of pure Al2O3 and 0.3 wt% NiO-doped Al2O3 had near theoretical density and dense microstructure.

  • PDF

Analysis on Bowing and Formation of Al Doped P+ Layer by Changes of Thickness of N-type Wafer and Amount of Al Paste (N타입 결정질 실리콘 웨이퍼 두께 및 알루미늄 페이스트 도포량 변화에 따른 Bowing 및 Al doped p+ layer 형성 분석)

  • Park, Tae Jun;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2015
  • In this study, in order to improve the efficiency of n-type monocrystalline solar cells with an Alu-cell structure, we investigate the effect of the amount of Al paste in thin n-type monocrystalline wafers with thicknesses of $120{\mu}m$, $130{\mu}m$, $140{\mu}m$. Formation of the Al doped $p^+$ layer and wafer bowing occurred from the formation process of the Al back electrode was analyzed. Changing the amount of Al paste increased the thickness of the Al doped $p^+$ layer, and sheet resistivity decreased; however, wafer bowing increased due to the thermal expansion coefficient between the Al paste and the c-Si wafer. With the application of $5.34mg/cm^2$ of Al paste, wafer bowing in a thickness of $140{\mu}m$ reached a maximum of 2.9 mm and wafer bowing in a thickness of $120{\mu}m$ reached a maximum of 4 mm. The study's results suggest that when considering uniformity and thickness of an Al doped $p^+$ layer, sheet resistivity, and wafer bowing, the appropriate amount of Al paste for formation of the Al back electrode is $4.72mg/cm^2$ in a wafer with a thickness of $120{\mu}m$.

Power 및 temperature에 의한 증착률 변화와 Al-doped ZnO의 특성변화에 관한 연구

  • An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.107-107
    • /
    • 2011
  • 오늘 날 transparent conductive oxide는 다양한 분야에서 활용되고 있다. 최근에는 태양전지 분야에서도 많이 활용되고 있으며, 초기에는 transmittance 및 낮은 sheet resistance 특성을 가지는 ITO가 많이 활용되었지만 thin film solar cell와 같이 hydrogenation 공정에 약한 ITO보다는 Al-doped ZnO가 사용되기 시작하면서 많은 연구가 진행되고 있다. 본 연구에서는 thin film solar cell 및 silicon heterojunction solar cell에 적용 가능한 Al-doped ZnO에 관한 연구로써 a-Si:H의 Si-H bonds에 영향을 주지 않는 낮은 영역의 substrate temperature와 power로 Al-doped ZnO를 형성하고 상기 parameter에 따른 Al-doped ZnO의 특성 변화에 대해서 분석하였다. 특히 substrate temperature가 변화할수록 carrier concentration 및 sheet resistance가 많은 변화를 보였으며 이로 인하여 transmittance 특성이 온도에 따라 좋아지다가 너무 높은 온도에서는 오히려 좋지 않게 되었다. 이는 너무 높은 carrier concentration은 free carrier absorption에 의해 transmittance 특성을 오히려 좋지 않게 한다. 우리는 본 연구를 통해 92.677% (450 nm), 90.309% (545 nm), 94.333% (800 nm)의 transmittance를 얻을 수 있었다.

  • PDF