• Title/Summary/Keyword: Al-alloying

Search Result 311, Processing Time 0.021 seconds

Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment (기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성)

  • Chang-Suk Han;June-Sung Kim;Woo-Bin Sim
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.242-250
    • /
    • 2023
  • Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.

Electrodes for contact electric welding of aluminium alloys

  • Bondar, M.P.;Moon, J.G.
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.184-193
    • /
    • 1997
  • Aluminium and aluminium alloys have the high electrical and heat conductivity. It gives rise to difficulties for a choice of electrodes material for their contact electric welding. This paper describes the investigations performed to solve the above problem. The purpose of this investigation was to obtain dispersion-hardening alloys by the internal oxidation method, to optimize their contents and treatment modes, to produce electrodes of these alloys and to test them. The strengthing effect of alloys with oxide particles depends on their size stability at high temperatures. Despite of the fact, that oxides are the most stable of all the non-metallic phases their coagulation takes place. Based on the early results, we chose two types of alloys, first No. 1 Cu - 0,4%Al and second No. 2 Cu - 0,2%Be for production of electrodes. These alloys had not additional alloying elements. These alloys were prepared as 1 mm plates and flake-formed 200 m thick, and also No. 1 as a powder of size 100 mkm (received from Korea). The large samples for electrodes were produced by three methods : explosive welding method, dynamic one including the explosion compression of electrode blank and the quasi-dynamic method including the high-speed compression of dense briquest and the further hot extrusion of a rod.

  • PDF

Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium (순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성)

  • Park, Taesung;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.

Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route (분말야금법을 활용한 나노 하이브리드 구조 철-망간계 분말야금재 제조)

  • Jeon, Jonggyu;Kim, Jungjoon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.203-209
    • /
    • 2020
  • The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.

High Temperature Salt Corrosion Property of Ferritic Stainless Steels (페라이트계 스테인리스강의 고온염 부식특성에 관한 연구)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

Microstructure and Creep Property of Die-Cast AXE710 Mg Alloy (다이캐스팅으로 제조한 AXE710 Mg 합금의 미세조직 및 크리프 특성)

  • Kang, Mun Gu;So, Tae Il;Jung, Hwa Chul;Shin, Kwang Seon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.686-691
    • /
    • 2011
  • To develop creep resistant die-cast Mg alloys, various alloying elements, including Ca, Ce, and Sr, were added to a Mg-Al alloy. The AXE710 alloy was produced on a 320 ton high-pressure die casting machine. The microstructure and creep properties of the alloy were examined. The creep behavior was investigated at $150^{\circ}C$ for stresses ranging from 50 to 100 MPa. The stress exponent was derived from the relationship between normalized secondary creep rates and compensated effective stresses. It was found to be 4.9, indicating that the dislocation climb is a dominant creep mechanism.

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

Effects of 3rd Element Additions on the Oxidation Resistance of TiAi Intermetallics (합금원소 첨가가 TiAI계의 내산화성에 미치는 영향)

  • Kim, Bong-Gu;Hwang, Seong-Sik;Yang, Myeong-Seung;Kim, Gil-Mu;Kim, Jong-Jip
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.669-680
    • /
    • 1994
  • Oxidation behaviour of TiAl intermetallic compounds with the addition of Cr, V, Si, Mo, or Nb was investigated at 900~$1100^{\circ}C$ under the atmospheric environment. The reaction products were examined by XRD, SEM equipped with WDX. The weight gain by continuous oxidation increased with the addition of Cr or V, but there was less weight gain when Mo, Si or Nb was added individually. he oxidation rate of Cr- or V-added TiAl was always larger than that of TiAI. However, oxidation rate of Si-, Mo- or Nb-added TiAl was almost same or smaller than that of TiAI. Thus, it is concluded that the addition of Cr or V did not improve the oxidation resistance, whereas the addition of Si, Mo or Nb improved the oxidation resistance. Oxides formed on TiAl with Mo, Si, and Nb were found to be more protective, resulting from the decrease in diffusion rate of the alloying elements and oxygen. Nb strengthened the tendency to form $AI_{2}O_{3}$ in the early stage of oxidation, due to the continuous $AI_{2}O_{3}$ layer formation and dense $Tio_{2}+AI_{2}O_{3}$ layer. According to the Pt-marker test of TiAI- 5wt%Nb, oxygen diffused mainly inward while oxides were formed on the substrate surface. Upon thermal cyclic oxidation at $900^{\circ}C$, it is shown that the addition of Cr or Nb improved the adherence of oxide scale to the substrate.

  • PDF

Effects of the Precipitation of Carbides and Nitrides on the Texture Structures in Extra Low Carbon Steel Sheets containing B, Nb and Ti(ll) (B, Nb및 Ti를 함유한 극저탄소강에서 탄화물 및 질화물의 석출이 집합조직에 미치는 영향(ll))

  • Lee, Jong-Mu;Yun, Guk-Han;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.131-139
    • /
    • 1993
  • Abstract Alloying elements such as AI, Ti, Nb and B in the extra low carbon AI-killed steel precipitate as nitrides or carbides and change the recrystallization texture structure of the steel during heattreatment with the result of strong effects on the deep drawability of the steel sheet. In this study the effects of fine precipitates such as nitrides and carbides on the texture of extra low carbon steels into which Ti, Nb, B, P, Si and Mn were added as alloying elements were investigated by means of TEM, SEM and optical microscopic analyses. Fine N$b_2$C and T$i_2$AIN precipitates are mainly observed in the steel containing both Nb and Ti, while fine AIN and coarse BN precipitates are observed in the Nb~containing steel and coarse T${i_4}{N_3}$ and ${N_10}{N_22}$/T$i_68$ precipitates are observed in the Ti-containing steel. The grain size of the Ti containing steel is larger than that of the Nb containing steel and that of the one containing both Nb and Ti.

  • PDF

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF