DOI QR코드

DOI QR Code

Microstructure and Creep Property of Die-Cast AXE710 Mg Alloy

다이캐스팅으로 제조한 AXE710 Mg 합금의 미세조직 및 크리프 특성

  • Kang, Mun Gu (Magnesium Technology Innovation Center, Research Institute of Advanced Materials School of Materials Science and Engineering, Seoul National University) ;
  • So, Tae Il (Magnesium Technology Innovation Center, Research Institute of Advanced Materials School of Materials Science and Engineering, Seoul National University) ;
  • Jung, Hwa Chul (Magnesium Technology Innovation Center, Research Institute of Advanced Materials School of Materials Science and Engineering, Seoul National University) ;
  • Shin, Kwang Seon (Magnesium Technology Innovation Center, Research Institute of Advanced Materials School of Materials Science and Engineering, Seoul National University)
  • 강문구 (마그네슘기술혁신센터, 서울대학교 재료공학부) ;
  • 소태일 (마그네슘기술혁신센터, 서울대학교 재료공학부) ;
  • 정화철 (마그네슘기술혁신센터, 서울대학교 재료공학부) ;
  • 신광선 (마그네슘기술혁신센터, 서울대학교 재료공학부)
  • Received : 2011.07.04
  • Published : 2011.09.25

Abstract

To develop creep resistant die-cast Mg alloys, various alloying elements, including Ca, Ce, and Sr, were added to a Mg-Al alloy. The AXE710 alloy was produced on a 320 ton high-pressure die casting machine. The microstructure and creep properties of the alloy were examined. The creep behavior was investigated at $150^{\circ}C$ for stresses ranging from 50 to 100 MPa. The stress exponent was derived from the relationship between normalized secondary creep rates and compensated effective stresses. It was found to be 4.9, indicating that the dislocation climb is a dominant creep mechanism.

Keywords

Acknowledgement

Supported by : 서울대

References

  1. C. D. Lee, Met. Mater. Int. 16, 543 (2010). https://doi.org/10.1007/s12540-010-0804-2
  2. S. G. Lee, Met. Mater. Int. 15, 585 (2009). https://doi.org/10.1007/s12540-009-0585-7
  3. T. Koike, T. Suzuki, and J. Inami, J. Kor. Found rymen's Soc. 30, 121 (2010).
  4. E. J. Vinarcik, High Integrity Die-casting Processes, p. 12-18, John Wiley & Sons, New York (2003).
  5. M. M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, p. 66-77, ASM International, Metal Park, OH (1999).
  6. Y. J. Jung and K. S. Shin, Mater. Sci. Forum 475-479, 537 (2005).
  7. Y. G. Na, C. D. Yim, S. C. Park, and K. S. Shin, Mater. Sci. Forum 419-422, 285 (2003).
  8. B. S. Shin, J. W. Kwon, and D. H. Bae, Met. Mater. Int. 15, 203 (2009). https://doi.org/10.1007/s12540-009-0203-8
  9. M. O. Pekguleryuz and E. Baril, Magnesium Technology 2001 (ed. J. Hryn), p. 119, TMS, Warrendale, PA (2001).
  10. P. Bakker, K. Pettersen and H. Westengen, Magnesium: Proc. 6th Int. Conf. on Magnesium Alloys and Their Applications (ed. K. U. Kainer), p. 140, Stuttgart, Germany (2003).
  11. A. Suzuki, N. D. Saddock, J. W. Jones, and T. M. Pollock, Scr. Mater. 51, 1005 (2004). https://doi.org/10.1016/j.scriptamat.2004.07.011
  12. N. E. Kang, C. D. Yim, B. S. You, and I. M. Park, Kor. J. Met. Mater. 48, 85 (2010). https://doi.org/10.3365/KJMM.2010.48.01.085
  13. F. V. Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger, and D. Eliezer, Magnesium Technology 2002 (ed. H. I. Kaplan), p. 61, TMS, Warrendale, PA (2002).
  14. K. Maruyama, M. Suzuki, and H. Stao, Metall. Mater. Trans. 33A, 875 (2002).
  15. S. M. Zhu, M. A. Gibson, J. F. Nie, M. A. Easton, and T. B. Abbott, Scr. Mater. 58, 477 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.041
  16. F. A. Mohamed and T. G. Langdon, Acta Metall. 22, 779 (1974). https://doi.org/10.1016/0001-6160(74)90088-1
  17. C. D. Yim and B. S. You, J. Kor. Found rymen's Soc. 28, 89 (2008).
  18. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, Second ed., ASM International, Metals Park, OH (1990).
  19. S. M. Zhu, M. A. Gibson, M. A. Easton, and J. F. Nie, Scr. Mater. 63, 698 (2010). https://doi.org/10.1016/j.scriptamat.2010.02.005
  20. A. Suzuki, N. D. Saddock, J. R. Terbush, B. R. Powell, J. W. Jones, and T. M. Pollock, Metall. Mater. Trans. 39A, 696 (2008).
  21. S. M. Zhu, B. L. Mordike, and J. F. Nie, Metall. Mater. Trans. 37A, 1221 (2006).
  22. J. Cadek, Creep in Metallic Materials, p. 176-184, Elsevier (1988).
  23. M. E. Kassner and M. T. Perez-Prado, Fundamentals of Creep in Metals and Alloys, p. 123-147, Elsevier (2004).
  24. S. O. Han and C. S. Han, Kor. J. Met. Mater. 48, 1070 (2010).
  25. K. W. Choi, Y. H. Park, B. G. Park, Y. H. Park, I. M. Park, and K. M. Cho, J. Kor. Inst. Met. & Mater. 46, 412 (2008).
  26. R. Lagneborg and B. Bergman, Metal Sci. 10, 20 (1976). https://doi.org/10.1179/030634576790431462