• Title/Summary/Keyword: Al-Zn-Mg alloy

Search Result 188, Processing Time 0.023 seconds

Study on Castability and Creep Properties of Mg-Zn-Y-X (X=Al or Mm) Alloys as Casting Alloy (주조용 합금으로서 Mg-Y-X (X=Al or Mm) 합금의 주조성 및 크리프 성질에 관한 연구)

  • Lim, Hyun-Kyu;Lee, Ju-Youn;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • In the present study, the possibility of Mg-Zn-Y alloys as high temperature casting alloys has been investigated. The fluidity of alloys containing yttrium were better than that of commercial AZ91 alloy because the oxide layer on the surface reduced the reaction between melt, and air and mold, which would reduce the resistance during the process of filling the mold. However, this oxide film reduced the hot-tearing resistance. In the case of ZAW942, this alloy exhibited fluidity and hot-tearing resistance better than AZ91 alloy. Because of thermally stable quasicrystal and other phases obstructed the movement of grains, the creep resistance of alloys containing rare earth elements more than 2 wt% was better than that of AZ91 alloy.

A Study on the Creep Behaviour of Al-Zn-Mg Alloy (Al-Zn-Mg 계 합금의 Creep 거동에 관한 연구)

  • Park, Jong Geon;Choi, Jae Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 1993
  • The static creep mechanism and behaviour of Al-Zn-Mg alloy have been investigated under condition of constant stress tension creep test in the temperature and stress range of $170-260^{\circ}C$ and 5-12.5 $kg/mm^2$ respectively. The experimental result are follows : The stress exponent value for creep was observed to about 7.3-6.43 and the activation energy for creep deformation was 44-41 kcal/mol. Larson-Miller parameter P for the crept specimens under the creep condition was obtained as P = (T + 460) (log $t_r$ + 8.6). Emperical equation for the creep rate was obtained by the computer simulation as follows. $${\varepsilon}\;=\;\exp[(-5.519{\times}10^{-4}{\sigma}+2.33{\times}10^{-2})T-6.98{\sigma}+18.295]{\times}{\sigma}^{-0.0142+10.18}\exp[\frac{(-6{\sigma}+47.8)1000}{RT}]$$ Fracture was dominated by intergranular mechanism over the experimental range.

  • PDF

Creep Behaviour of Al-Zn-Mg Ternary Aluminum Alloy (Al-Zn-Mg 3원계 알루미늄 합금의 크리프 거동)

  • 윤종호;황경충
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.203-208
    • /
    • 2004
  • To make practical applications of Al-Zn-Mg ternary aluminum alloy effectively in various field, a series of static creep tests under the 16 temperature-stress combination conditions had been performed. The creep tester with constant stress loading was designed and made by the authors and used in this study. The higher the creep temperature rose, the less the stress exponents became. The bigger the applied stresses became, the less values the creep strain activation energy showed. The life prediction constant of Larson-Miller parameter was calculated as about 2.3. In the fractography, the ductile fracture with dimples by intergranular breakage was primarily observed. We can make practical use of these test data in the design, the life prediction and the prevention of the accidents of the thermal facilities, etc.

Effect of Cooling Rate on Lamellar Structure and Hardness of Discontinuous Precipitates in Mg-Al-Zn Alloy (Mg-Al-Zn 합금에서 불연속 석출물의 층상 구조와 경도에 미치는 냉각 속도의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • The relationship between the hardness and interlamellar spacing of discontinuous precipitates (DPs) formed by continuous cooling was studied for Mg-9%Al-1%Zn alloy. After solution treatment at 683 K for 24 h, the specimens were cooled to room temperature with different cooling rates ranging from 0.2 to 2 K·min-1, in order to obtain DPs with various interlamellar spacings. It was found that cooling rate of 2 K·min-1 yielded only small amount of nodular DPs at the grain boundaries, while cooling rates below 2 K·min-1 yielded both DPs and continuous precipitates (CPs). The volume fraction of DPs increased with increasing cooling rate up to 0.5 K·min-1, over which it abruptly decreased. The hardness of DPs was increased with an increase in the cooling rate, whereas the interlamellar spacing of the DPs was decreased with respect to cooling rate. The hardness of the DPs formed by continuous cooling was correlated with the interlamellar spacing and can follow a Hall-Petch type relation as in the case of pearlite with lamellar morphology.

The Squeeze Casting and Its Structure of Mg-Al-Zn Alloy (Mg-Al-Zn합금에 있어서의 용탕단조와 그 조직)

  • Choi, J.C.;Choi, Y.D.
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.419-425
    • /
    • 1997
  • 용탕단조방법에 의해 제조된 Mg-6Al-xZn(x=0, 1, 2)합금의 기계적 성질에 미치는 시효열처리의 영향을 조사한결과 아래와 같은 결론을 얻었다. (1) 주조조직을 관찰한 결과 미세한 수지상조직을 나타냈으며 초정${\alpha}$, 과포화 ${\alpha}$, ${\beta}$상 등 세가지 상으로 구성되어 있었다. (2) Mg-6Al-xZn합금은 시효경화성을 나타내었으며 Zn의 첨가량이 증가할수록 전시효구간에서 경도값이 높게 나타났다. (3) 시효조직을 관찰한 결과 $200^{\circ}C$의 시효시에는 불연속 석출물이 대부분 차지했으나 $240^{\circ}C$의 시효온도에서는 수지상 경계에서 시작되는 미세분산된 연속석출물이 대부분 이었다. (4) $240^{\circ}C$에서 시효열처리 한 시편은 연속석출물이 석출됨으로서 $200^{\circ}C$에서의 시효열처리된 시편에 비하여 과시효되는 경향이 작았다. (5) T6열처리 후 인장시험 결과 Zn 첨가량에 따라 강도가 증가하였는데 Mg-6Al-2Zn합금의 경우 인장강도는 248.4 MPa을 나타내었으며 Zn양에 따른 연신율의 감소는 나타나지 않았다.

  • PDF

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AS CAST Al-6.5Mg-1.5Zn-0.5Fe ALLOY FOLLOWED BY COLD ROLLING AND SUBSEQUENT ANNEALING

  • SEONG-HEE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.875-878
    • /
    • 2019
  • Microstructures and mechanical properties of as-cast Al-6.5Mg-1.5Zn-0.5Fe alloys newly alloy-designed for the parts of automobile were investigated in detail. The aluminum (Al) sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1mm by multi-pass rolling at ambient temperature and subsequently annealed for 1h at 200~500℃. The as-cast Al sheet was deformed without a formation of so large cracks even at huge rolling reduction of 75%. The recrystallization begun to occur at 250℃, it finished at 350℃. The as-rolled material showed tensile strength of 430 MPa and tensile elongation of 4.7%, however the specimen after annealing at 500℃ showed the strength of 305 MPa and the elongation of 32%. The fraction of high angle grain boundaries above 15 degree increased greatly after annealing at high temperatures. These characteristics of the specimens after annealing were discussed in detail.

Effects of Mg and Cu Amounts on the Casting Characteristics and Tensile Property of Al-Zn-Mg-Cu Alloys (Al-Zn-Mg-Cu 합금의 주조성 및 인장특성에 미치는 Mg 및 Cu 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • The effects of Mg and Cu amounts on the casting characteristics and tensile property of Al-Zn-Mg-Cu alloys were investigated for the development of high strength aluminium alloys for gravity mold casting. Increase of copper amounts in Al-6%Zn-3%Mgy% Cu alloys resulted in reduction of the fluidity of these alloys and had little effects on the tensile property of these alloys. Increase of magnesium amounts from 1.0wt% to 3.3wt% in Al-6%Zn-x%Mg-0.5%Cu alloys resulted in reduction of the elongation of these alloys from 12% to 3% and increase of the tensile strength of these alloys from 340MPa to 450MPa, but had little effects on the fluidity of these alloys.

Effects of hairline treatment on surface blackening and thermal diffusion of Zn-Al-Mg alloy-coated steel sheet (Zn-Al-Mg 합금도금강판의 헤어라인 처리가 표면흑색화 및 열확산도에 미치는 영향)

  • Jin Sung Park;Duck Bin Yun;Sang Heon Kim;Tae Yeob Kim;Sung Jin Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • The effects of hairline treatment on surface blackening and thermal diffusion behaviors of Zn-Al-Mg alloy coated steel sheet were evaluated by the three-dimensional surface profiler and laser-flash technique. The metallographic observation of coating damages by hairline treatments showed that several cracks were initiated and propagated along the interface between primary Zn/eutectic phases. As the hairline processing became more severe, the crack occurrence frequency in eutectic phase of coating layer and the surface roughness increased, which had a proportional relationship with the level of blackening on the coating surface. In addition, the higher interfacial areas of the blackened coating surface, caused by the hairline process, led to an increase in thermal diffusivity and conductivity of the coated steel sheet. On the other hand, when the coating damage by hairline treatment was excessive and the steel substrate was exposed, there was little difference between the thermal diffusivity/conductivity of the untreated sample though the blackening degree was higher than that of untreated sample. This work suggests that the increase in the surface areas of the coating layer without exposure to steel substrate through hairline treatment can be one of the effective technical strategies for the development of Zn-Al-Mg alloy coated steel sheets with higher blackening level and thermal diffusivity.

Effect of Spark Plasma Sintering on the Materials Properties of Water Atomized Al-Zn-Mg Alloy (Spark plasma sintering을 이용한 수분무 Al-Zn-Mg합금분말의 소결특성)

  • Kim, Sun-Mi;Kim, Taek-Soo;Kim, Young-Do;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • In order to investigate the effect of rapid solidification on the microstructure and the mechanical properties of Al-Zn-Mg system alloys, water atomization was carried out, since the water atomization beared the highest solidification rate among the atomization processes. The as atomized alloy powders consisted of fine grains less than 4 ${\mu}m$ in diameter, and the second particles were not detected on XRD. The microstructure as solidified was maintained even after the spark plasma sintering at the heating rate of 50 K/min. On the other hand, lower rate of 20 K/min induced a formation of $MgZn_2$ particles, resulting in strengthening of the matrix. The density was almost constant at the temperature above 698K. The sintering temperature above 698K had no effect on the strength of the sintered materials.

Effects of Asymmetric Rolling and Aging Sequence on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Aluminum Alloys (비대칭 압연과 시효 시퀀스가 Al-Zn-Mg-Cu합금의 미세조직과 기계적 특성에 미치는 영향)

  • Minkyung Jeong;Jongbeom Lee;Su Hyeon Kim;Jun Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.285-297
    • /
    • 2023
  • The effects of aging treatment sequence, specifically pre-aging and post-aging, on the microstructure and mechanical properties of Al-Zn-Mg-Cu aluminum alloys has been studied in comparison to symmetrically rolled specimens. In symmetrically rolled specimens, a straight-band precipitation distribution was observed, whereas asymmetrically rolled specimens exhibited a curved-band microstructure of fine precipitates. Notably, the asymmetrically rolled specimens displayed higher strengths. In the case of post-aging, the aging process occurred after rolling, and the dislocations generated during rolling acted as nucleation sites for precipitates during aging. This resulted in the formation of fine precipitates, contributing to improved mechanical properties compared to symmetric rolling. To enhance strength of the Al-Zn-Mg-Cu aluminum alloys, asymmetric rolling proves to be more effective than symmetric rolling, with post-aging showing greater efficacy than pre-aging.