DOI QR코드

DOI QR Code

Effects of Asymmetric Rolling and Aging Sequence on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Aluminum Alloys

비대칭 압연과 시효 시퀀스가 Al-Zn-Mg-Cu합금의 미세조직과 기계적 특성에 미치는 영향

  • Minkyung Jeong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jongbeom Lee (Advanced Process and Materials Group, Korea Institute of Industrial Technology) ;
  • Su Hyeon Kim (Department of Aluminum, Korea Institute of Materials Science) ;
  • Jun Hyun Han (Department of Materials Science and Engineering, Chungnam National University)
  • 정민경 (충남대학교 신소재공학과) ;
  • 이종범 (한국생산기술연구원 융합공정소재그룹) ;
  • 김수현 (한국재료연구원 알루미늄연구실) ;
  • 한준현 (충남대학교 신소재공학과)
  • Received : 2023.09.12
  • Accepted : 2023.09.20
  • Published : 2023.09.30

Abstract

The effects of aging treatment sequence, specifically pre-aging and post-aging, on the microstructure and mechanical properties of Al-Zn-Mg-Cu aluminum alloys has been studied in comparison to symmetrically rolled specimens. In symmetrically rolled specimens, a straight-band precipitation distribution was observed, whereas asymmetrically rolled specimens exhibited a curved-band microstructure of fine precipitates. Notably, the asymmetrically rolled specimens displayed higher strengths. In the case of post-aging, the aging process occurred after rolling, and the dislocations generated during rolling acted as nucleation sites for precipitates during aging. This resulted in the formation of fine precipitates, contributing to improved mechanical properties compared to symmetric rolling. To enhance strength of the Al-Zn-Mg-Cu aluminum alloys, asymmetric rolling proves to be more effective than symmetric rolling, with post-aging showing greater efficacy than pre-aging.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부의 재원으로 한국연구재단-나노 및 소재기술기발사업의 지원(2021M3H4A1A04092005)과 산업통상자원부의 재원으로 한국산업기술진흥원의 지원(P0023676, 2023년 산업혁신인재성장지원사업)을 받아 수행된 연구임.

References

  1. M. Clarke, M, J. Smart, E. Botero, W. Maier, and J. J. Alonso: In AIAA Sci Tech 2019 Forum (2019) 2019-4505.
  2. J. W. Lee, H. J. Bong, D. Y. Kim, Y. S. Lee, Y. Choi, and M. G. Lee: Met. Mater. Int., 26 (2020) 682-694. https://doi.org/10.1007/s12540-019-00353-9
  3. 김희주, 정제기, 김수현, 임차용, 최윤석, 대한금속.재료학회지, 58 (2020) 7-16.
  4. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. D. Smet, A. Ha szler, a nd A. Viergge: Ma ter. Sci. Eng. A, 280 (2000) 37-49.
  5. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. S. Miller: Mater. Sci. Eng. A, 280 (2000) 102-107. https://doi.org/10.1016/S0921-5093(99)00674-7
  6. E. Georgantzia, M. Gkantou, and G. S. Kamaris: Eng. Struct., 227 (2021) 111372.
  7. S. B. Park, S. H. Kayani, K. Euh, E. H. Seo, H. Y. Kim, S. G. Park, B. N. yadav, S. J. Park, H. K. Sung, and I. D. Jung: J. Alloys Compd., 903 (2022) 163828.
  8. C. Mondal and A. K. Mukhopadhyay: Mater. Sci. Eng. A, 391 (2005) 367-376. https://doi.org/10.1016/j.msea.2004.09.013
  9. N. M. Han, X. M. Zhang, S. D. Liu, D. G. He, and R. Zhang: J. Alloys Compd., 509 (2011) 4138-4145. https://doi.org/10.1016/j.jallcom.2011.01.005
  10. J. D. Robson: Mater. Sci. Eng. A, 382 (2004) 112-121. https://doi.org/10.1016/j.msea.2004.05.006
  11. M. Y. Amegadzie and D. P. Bishop: Mater. Today. Commun., 25 (2020) 101283.
  12. W. K. Chae, M. K. Jeong, D. G. Lee, J. B. Lee, D. W. Chun, S. Y. Lee, S. K. Hong, S. H. Kim, and J. H. Han: J. Mater. Res. Technol., 24 (2023) 9476-9490.
  13. D. C. C. Magalhaes, M. F. Hupalo, and O. M. Cintho: Mater. Sci. Eng. A, 593 (2014) 1-7. https://doi.org/10.1016/j.msea.2013.11.017
  14. M. Zhang, C. Li, Y. Zhang, S. Liu, J. G. Jiang, J. Tang, L. Ye, and X. Zhang: Mater. Charact., 172 (2021) 110861.
  15. X. Zhang, W. Liu, S. D. Liu, and M. Z. Zhou: Mater. Sci. Eng. A, 528 (2011) 795-802. https://doi.org/10.1016/j.msea.2010.07.033
  16. A. L. M. Carvalhoa, L. B. Renaudinb, A. J. Zaraa, and J. P. Martins: J. Alloy. Compd. 907 (2022) 164400.
  17. X. M. Li and M. J. Starink: J Mater Eng. Perform. 21 (2012) 977-984. https://doi.org/10.1007/s11665-011-9973-5
  18. R. Unnikrishnan, S. M. Northover, H. Jazaeri, and P. J. Bouchard: ECF21 (2016) 3501-3507.
  19. G. Peng, K. Chen, S. Chen, and H. Fang: Mater. Sci. Eng. A, 641 (2015) 237-341. https://doi.org/10.1016/j.msea.2015.06.058
  20. G. Sha and A. Cerezo: Acta Materialia, 52 (2004) 4503-4516. https://doi.org/10.1016/j.actamat.2004.06.025
  21. C. D. Marioara, W. Lefebvre, S. J. Andersen, and J. Friis: J. Mater. Sci., 48 (2013) 3638-3651. https://doi.org/10.1007/s10853-013-7158-3
  22. W. Huo, L. Hou, Y. Zhang, and J. Zhang: Mater. Sci. Eng. A, 675 ( 2016) 44-54. https://doi.org/10.1016/j.msea.2016.08.054
  23. M. H. Shaeri, M. T. Salehi, S. H. Seyyedein, M. R. Abutalebi, and J. K. Park: Mater. Des., 57 (2014) 250-257. https://doi.org/10.1016/j.matdes.2014.01.008
  24. M. H. Shaeri, M. Shaeri, M. T. Salehi, S. H. Seyyedein, and M. R. Abutalebi: Prog. Nat. Sci., 25 (2015) 159-168. https://doi.org/10.1016/j.pnsc.2015.03.005
  25. 허지구, 이윤수, 김민석, 김형욱, 김양도: 대한금속.재료학회지, 57 (2019) 396-404.
  26. C. Wei, Z. Lei, S. Du, R. Chen, Y. Yin, C. Niu, and Z. Xu: Materials (Basel), 16 (2023) 4441. https://doi.org/10.3390/ma16124441