• Title/Summary/Keyword: Al-Y coating

Search Result 935, Processing Time 0.021 seconds

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

The Microstructure And The Mechanical Properties Of(Ti$_{1-x}$AI$_{x}$)N Coatings Deposited By Plasma Enhanced Chemical Vapor Deposition(PECVD) (플라즈마 화학증착법에 의해 제조된 (Ti$_{1-x}$AI$_{x}$)N 박막의 미세조직 및 기계적 특성에 관한 연구)

  • Lee, D.K.;Lee, S.H.;Han, Y.H.;Lee, J.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.97-104
    • /
    • 2001
  • ($Ti_{ 1-x}$$Al_{ x}$)N has been deposited on high speed steel (HSS) substrate using PECVD from the gas mixture of $TiC1_4$, $AlC1_4$, $NH_3$, $H_2$, and Ar. The correlation between the microstructure and the mechanical properties was investigated. ($Ti_{1-x}$$Al_{ x}$)N showed single phase NaCl-structure up to X=0.87, while a mixed phase of NaCl Type (Ti, Al) N and wurtzite structure AlN was observed for 0.87$Ti_{1-x}$ $Al_{x}$ )N became by degrees as increasing X, which made the hardness of the coating higher by Al addition. When the coating was composed of a mixed phase, however, the hardness decreased abruptly due to the effect of soft AlN phase. The wear volume of the coatings could be obtained as the concentration of the coating was varied, and the relation between the wear volume and hardness or the adhesion strength was discussed.

  • PDF

High temperature properties of surface-modified Hastelloy X alloy (표면처리에 따른 Hastelloy X 합금의 고온물성)

  • Cho, Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.183-189
    • /
    • 2012
  • Surface treatments and their effects on high temperature properties for the Hastelloy X, which is a promising candidate alloy for high temperature heat-transport system, have been evaluated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods using an arc discharge and a sputtering, were applied, respectively. In addition, a different surface treatment method of the diffusion coating by a pack cementation of Al (aluminiding) was also adopted in this study. To achieve enhanced thermal oxidation resistance at $1000^{\circ}C$ by suppressing the inhomogeneous formation of thick $Cr_2O_3$ crust at the surface region, a study for the surface modification methods on the morphological and structural properties of Hastelloy X substrates has been conducted. The structural and compositional properties of each sample were characterized before and after heat-treatment at $1000^{\circ}C$ under air and He environment. The results showed that the Al diffusion coating showed the more enhanced high temperature properties than the overlay coatings such as the suppressed thick $Cr_2O_3$ crust formation and lower wear loss.

Interfacial Reaction of Galvanized Steel in Ni Added Zn-0.18Al Bath (Zn-0.18Al 도금욕에서 Ni첨가에 따른 아연 도금강의 계면반응)

  • 이경구;기회봉;이도재
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.4
    • /
    • pp.547-554
    • /
    • 1999
  • The interfacial reaction, spangle and coating thickness of galvanized steel in Ni added Zn-0.18Al bath have been investigated. The size of spangle and thickness of reaction layer were observed under an optical microscope, SEM and EDS. Analysing the experimental results concerning spangle size of galvanized steel it was found that Ni addition in Zn-0.18Al bath tended to be minimized spangle size. For Zn-0.18Al bath, addition of 0.1Ni suppressed the formation of Fe-Zn intermetallic compounds but increased with Ni content above 0.1%. The coating thickness of galvanized steel was reduced with Ni addition in Zn-0.18Al bath, especially in Zn-0.18Al-0.05Ni bath. Addition of Al in Ni containing bath resulted in forming the Al-Ni intermetallic compounds such as $Al_3$Ni$_2$ and $Al_2$Ni which consist most of top precipitates.

  • PDF

Characteristics of Al2O3, Cr2O3, WC-Ni, and Chromizing Surface Coatingsunder Environment with HighTemperature, Wear, and Corrosion (고온, 마모 및 부식환경에 적용가능한 Al2O3, Cr2O3, WC-Ni 및 크로마이징 코팅층의 기계적 특성 평가)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.895-900
    • /
    • 2013
  • Several plasma spray and metallurgical surface coatings such as $Al_2O_3$, $Cr_2O_3$, WC-Ni, and chromizing coating have been examined for their application in environments with high temperature, wear, and corrosion. The chromizing coating is different from others coatings in the manufacturing process the surface. These coatings' characteristics were tested experimentally, and the results were compared. WC-Ni shows good performance against thermal barrier, wear, and corrosion and is one of the best candidates for the environment considered herein. These coatings were studied for their application in the steel manufacturing industry. The most commonly required functions in this industry are thermal and wear resistance.

Microstructure and Hot Corrosion Resistance of Aluminide and Chromium-Aluminide Coatings for Inconel 600 (Inconel 600에 있어서 Al 및 Al-Cr擴酸浸透 被覆處理에 따른 被覆層의 特性과 耐蝕性)

  • Chung In-Sang;Park, Kyeung-Chae;Park, Soo-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.95-105
    • /
    • 1987
  • For the purpose of improving the hot corrosion resistance of Ni-base superalloy, Inconel 600, aluminide and chromium-aluminide coatings by pack cementation process were studied. The morphology of these coatings is dependent on the type of process employed. And their overall composition depends on the composition of the base alloy and on the nature of the cement. Therefore the different aluminide and chromium-aluminide coatings obtained on a superalloy do not possess the same resistance to oxidation and hot corrosion. The mechanisms governing the formation of the coatings and the composition of the coating were varied by pack composition and temperature, and cyclic hot corrosion resistance of the auluminide coating formed by one-step process was inferior to that of the coating formed by two-step process. and Cr-Al composite coating showed good resistance for cyclic hot corrosion.

  • PDF

A Study on Coating Adhesion of Hot Rolled Galvanized Iron Manufactured without pickling process (산세생략형 열연 용융아연도금강판의 특성)

  • 최진원;전선호
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • Coating adherance behavior of low carbon steels, produced by POSCO, Korea, was studied in order to study the characteristics of hot rolled galvanized iron(HGI) manufactured without pickling line and the development of its process. Galvanizing experiments were carried out in zinc pot with 0.2wt% Al after hot rolled plates with scale were reduced at $550~750^{\circ}C$ in 10~30% hydrogen gas atmosphere during 60~400seconds. The reduced plates and coated products were examined by SST, XRD, SEM and EPMA on their surfaces and cross sections. Coating layer of HGI manufactured with pickling line was composed of retained scale, Fe-Zn-Al compound, Fe-Zn compound ($\delta_1\;and\;\zeta$ Phase) and pure zinc. It was superior to HGI in coating adhesion. It seems to be due to forming of Fe-Zn-Al compound in interface of matrix and retained porous scale.

  • PDF

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings (HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.