• Title/Summary/Keyword: Al-Si-SiC

Search Result 2,079, Processing Time 0.031 seconds

Phase and Microstructure of SiC-AlN Ceramics Prepared by Pressureless Sintering (상압소결에 의하여 제조된 SiC-AlN 세라믹스의 상 및 미세구조)

  • Choi, Woong;Lee, Jong-Kook;Cho, Duk-Ho;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1308-1314
    • /
    • 1995
  • Changes in phase and microstructure were investigated in the SiC-AlN ceramics prepared by pressureless sintering using yttrium aluminum garnet (YAG) as a sintering aid at 200$0^{\circ}C$ and 210$0^{\circ}C$. The SiC/AlN ratio made a remarkable difference in densification, phase relations and the morphology of grains. In the AlN-rich composition, major phase was 2H and microstructure was composed of the densified equiaxed grains irrespective of the sintering temperatures. While those sintered at 200$0^{\circ}C$ were porous with major phase being 3C, the rod-like and the equiaxed grains were coexisted when sintered at 210$0^{\circ}C$ in the SiC-rich composition.

  • PDF

Crystal growth of AlN thin films on 3C-SiC buffer layer (3C-SiC 완충층을 이용한 AIN 박막의 결정성장)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.346-347
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Polycrystalline (poly) 3C-SiC buffer layers using pulsed reactive magnetron sputtering. Characteristics of AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. As a result, highly (002) oriented AlN thin films with almost free residual stress were achieved using 3C-SiC buffer layers. Therefore, AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

  • PDF

Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN Composite (상압소결에 의하여 제조된 SiC-AlN 복합체에서의 고용체 형성과 미세구조)

  • Lee, Jong-Kook;Kim, Duk-Jun;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.785-792
    • /
    • 1996
  • Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN compo-site using oxides as a sintering aid at 185$0^{\circ}C$ and 195$0^{\circ}C$ Regardless of SiC/AlN ratio in composition most of sintered specimens showed he complex structure mixed with 2H solid solution and SiC particles. High sintering temperature and large AlN content in starting composition enhanced the formation of 2H solid solution in sintered specimen 2H solid solution showed the spherical shape and core-rim structure. AlN content in the core is higher than that in the rim but SiC content . The size of 2H solid solution on fracture showed the transgranular fracture mode compared with the dispersed SiC particles which showed the intergranular fracture mode.

  • PDF

A Study for the Increased Reliability of Al-1%Si Thin Film Metallizations (Al-1%Si 박막 금속화의 신뢰도 향상을 위한 연구)

  • 최재승;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.3
    • /
    • pp.382-388
    • /
    • 1992
  • Electromigration은 인가된 전계하에서 발생하는 전자풍력에 의한 금속 이온의 현 상이며, 반도체 디바이스의 주요 결함 원인으로 보고되어 왔다. 선폭 1$mu extrm{m}$의 Al-1%Si 금속 박막전도체에 대한 electromigration 수명 실험을 위해 인가된 d.c. 전류밀도는 10MA/cm2 이었고, electromigration에 대한 활성화 에너지 측정을 위한 분위기 온도는 $80^{\circ}C$, 10$0^{\circ}C$ 그리고 $120^{\circ}C$이었다. 평균수명 및 신뢰성에 대한 보호 절연막 효과를 위해 두께 3000 $\AA$의 SiO2 산화막을 sputtering 진공증착기를 사용하여 Al-1%Si 금속 박막 전도체 위에 증착하였 다. 주요 연구 결과는 다음과 같다. Al-1%Si 금속 박막 전도체의 electromigration에 대한 활성화 에너지값은 0.75eV이었고 온도가 증가함에 따라 Al-1%Si의 수명은 감소하였고 신 뢰성은 향상되었다. SiO2 보호막은 electromigration에 대한 저항성을 크게 함으로써 평균수 명을 향상시켰으며, electromigration failure는 lognormal failure distribution은 갖는 것으로 나타났다.

  • PDF

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.

Improvement of Mechanical Properties of P/M Processed $2XXX Al-SiC_w$ Composites ($2XXX Al-SiC_w$ 복합재료의 분말야금 제조와 기계적 성질 향상 연구)

  • 신기삼
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.238-246
    • /
    • 1995
  • The purpose of this study is to establish powder metallurgy (P/M) fabrication processes for high performance 2XXX Al composites reinforced with SiC whiskers. Rapidly solidified 2XXX Al powders produced by commercial atomization technique were mixed with SiC whiskers. The results of mixing processes indicated that fluidized zone mixing technique was considerably effective for the large scale production of the mixture of Al powders and whiskers. In order to consolidate these $Al-SiC_w$ mixtures into $Al-SiC_w$ composite billets, a vacuum hot press was set up, and hot processing variables were investigated. Using the hot pressing temperature of $620^{\circ}C$ under the pressure of 50 MPa, good quality $Al-SiC_w$ composite billets having relatively homogeneous microstructure and sound Al/sic interfacial bonding were obtained. Composite billets were then extruded to bars having relatively homogeneous microstructures at the extrusion temperature of 450~500$^{\circ}C$ under the extrusion pressure of 700~ 1000 MPa. Mechanical properties of the extruded bars were found to be comparable with those of the composite processed by Advanced Composite Materials Corp. To improve mechanical properties of the composites, elimination of coarse intermetallic compounds, uniform distribution of reinforcements, and minimization of whisker breakage are suggested.

  • PDF

Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development (Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

Preparation of $Al_2O_3-SiC$ Composite Powder by SHS Method (SHS법에 의한 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이형민;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 1995
  • High reaction heat evolved from the oxidation of Al was used to synthesize SiC, which might be difficult to be formed by SHS. Al2O3-SiC composite powder was easily manufactured using KNO3 as an ignition and reaction catalyst. Unreacted Si and C were observed after reaction dependent upon the composition of starting powders, reaction atmosphere and relative densities of compacted bodies. The unreacted carbon could be removed by calcining at $600^{\circ}C$ and the remaining Si could be removed by dissolving in NaOH solution. The final powder particles were smaller than 1${\mu}{\textrm}{m}$ in size.

  • PDF

R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis (SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석)

  • 나상웅;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF

Preparation of SiC-Al alloy Composite by Pressureless Powder Packing Forming Method (분말 충전 성형법을 이용한 SiC-Al Alloy 복합체의 제조)

  • 박정현;송준광;백승수;염강섭;강민수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • To fabricate the ceramic/metal(SiC/ Al alloy) composite, SiC preform was prepared by Pressureless Powder Packing Forming Method and 6061 Al alloy was infiltrated into the preform. Uniform compact having an average pore size of 10 ${\mu}{\textrm}{m}$ and narrow pore size distribution was prepared. Phenolic resin solution(40 wt%) was penetrated into the SiC compact, and then the compact was preheated at the temperature of 120$0^{\circ}C$. The pore size distribution and the microstructure of the preform were not changed by preheating. An uniform microstructure without any crack in the preform was obtained in SiC-Al alloy composite. The infiltration of 6061. Al alloy into the preform began at the temperature of 130$0^{\circ}C$ and the amount of infiltration increased in proportion to the infiltration temperature and the soaking time. The increasement rate of the infiltration amount decreased after 3 h. As a result of the infiltration at 140$0^{\circ}C$ for 4 h, Al alloy was well distributed in the interparticle channels and the relative density of the composite was above 98%. The strength and the fracture toughness of the composite were 303 MPa and 21.65 MPam1/2, respectively.

  • PDF