• Title/Summary/Keyword: Al-Cu-Mg alloy

Search Result 156, Processing Time 0.025 seconds

Precipitation Behavior of Al-Zn-Mg-Cu-(Sc) Alloy (Al-Zn-Mg-Cu-(Sc) 합금의 석출특성)

  • Choi, G.S.;Mun, H.J.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Scandium(Sc) in Al-Zn-Mg-Cu based Al alloy on precipitation phenomenon was compared to a 7001(Al-7.2%Zn-3.2%Mg-1.8%Cu) Al alloy. GP zone and ${\eta}^{\prime}$ phases were the main strengthening phases at low aging temperature under $100^{\circ}C$, but ${\eta}^{\prime}$ and $Al_3Sc$ phases were the main strengthening phases at high aging temperature above $1600^{\circ}C$ in Sc added 7000(Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr) Al alloy. With the addition of 0.1%Sc in 7000 Al alloy, the activation energy for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phase decreased compared to the 7001 Al alloy. This result indicates that the Sc accelerated the precipitation for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phases in 7000 Al alloy. Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr-0.1 Sc alloy has higher strength than 7001 Al alloy, which has high strength.

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty (급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향)

  • 김홍물
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate (냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리)

  • Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Young-Hwa;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy (안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가)

  • Lee, Chang-Yeon
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.

Semi-Solid Forming of Al-Zn-Mg-Cu Alloy Applying Low-Temperature Casting Process (저온 주조법을 응용한 Al-Zn-Mg-Cu 합금의 반응고 성형)

  • Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.82-88
    • /
    • 2002
  • Al-5.5Zn-2.5Mg-l.5Cu semi-solid slurry was prepared by cooling the liquid metal with a low superheat to a solid and liquid co-existing temperature. Relatively round solid particles could be obtained in the slurry through the simple process. The prepared slurry was deformed into the metallic mold by a press and the mechanical properties of obtained specimens were investigated. Mold filling ability of the alloy slurry was also investigated and compared with that of A356 alloy. Al-Zn-Mg-Cu alloy showed lower mold filling ability than A356 alloy probably because small amount of eutectic phase is present and the heat of fusion generated during solidification is smaller than that of A356 alloy.

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF

Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting (Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향)

  • Kim, Ki-Tae;Yang, Jae-Hak;Lim, Young-Suk
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.