• 제목/요약/키워드: Al-Cu (W 3 %)

검색결과 119건 처리시간 0.024초

Cu-Al-Ni계 단결정 합금의 마르텐사이트 변태특성에 미치는 열처리의 영향 (The Effect of Heat Treatment on the Martensitic Transformation in an Cu-Al-Ni Single Crystal)

  • 김영삼;장우양
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.177-182
    • /
    • 2000
  • The effects of betatizing and aging temperatures on the martensitic transformation characteristics in an Cu-13.4wt%Al-4.2wt%Ni single crystal have been studied. Microstructures show that the specimen betatized above $800^{\circ}C$ has only ${{\beta}_1}^{\prime}$ martensite while the specimen betatized of below $700^{\circ}C$ has two phases i.e., ${{\beta}_1}^{\prime}+{\gamma}_2$ When betatizing temperature increase from $600^{\circ}C$ upto $900^{\circ}C$, Ms and As temperatures decrease due to the dissolution of which ${\gamma}_2$ phase depletes Al content in the matrix thereafter makes the both Ms and As temperatures significantly increased. Ms and As temperatures of the specimen aged at $200^{\circ}C$ are relatively stable but those of the specimen aged at $300^{\circ}C$ are shifted rapidly with aging time, especially within the first 30min.

  • PDF

키토산 부직포의 달맞이꽃을 이용한 염색성 및 매염효과 (Effect of Oenothera odorata jacquin Dye and Mordants on Chitosan Fiber)

  • 서혜영;송화순
    • 한국의류학회지
    • /
    • 제35권1호
    • /
    • pp.115-124
    • /
    • 2011
  • This study provides an eco-friendly dyeing processing for chitosan fiber using Oenothera odorata jacquin as a dye. The effects of chemical mordants (Al, Cu, Fe) and natural mordant (Chestnut shell) on the color change for dyed chitosan fibers were measured by K/S values, L, $a^*$, $b^*$, H, V, C values, color fastness, and antimicrobial activity. The results are as follows. Dyeing conditions of Oenothera odorata jacquin on chitosan fibers were optimized to $70^{\circ}C$, 30 minutes and 200% on weight of fabric (o.w.f.). The pre-mordant concentration of aluminium (Al), copper (Cu) and iron (Fe) of chitosan fibers was optimized to 3% (o.w.f.) and 1% (o.w.f.), respectively. The post-mordant concentration of chemicals, such as Al, Cu and Fe, on chitosan was determined to 1% (o.w.f.). The hue of chitosan fibers by chemical mordants was measured to be reddish & yellow. The pre-mordant concentration of Chestnut shell of chitosan was optimized to 70% (o.w.f.). The post-mordant concentration of Chestnut shell on chitosan was determined to be 50% (o.w.f.). The hue of chitosan fibers by Chestnut shell mordant was measured to be reddish & yellow. The wet cleaning fastness of chitosan fibers was improved by a pre-mordant that used chemical mordants. In the case of the Chestnut shell mordant, the wet cleaning fastness was improved by a post-mordant. The dry cleaning fastness of chitosan fibers was excellent regardless of mordants and mordant methods. The antimicrobial activity of the chitosan fiber was shown at 99.9% and its excellent qualities remained after the dyeing and mordant processing.

무기물계 폐기물로 합성한 제올라이트의 코발트, 니켈, 구리 이온의 회수 성능 (The Recovery Performance of Co, Ni, and Cu Ions Using Zeolites Synthesized from Inorganic Solid Wastes)

  • 이창한
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.723-728
    • /
    • 2012
  • In this study, zeolites were synthesized by a fusion and a hydrothermal methods using a coal fly ash and a waste catalyst. The recovery performance of metal ions on the structure property of synthetic zeolites was evaluated as comparing the adsorption kinetics (Lagergen 2nd order model) and isotherm (Langmuir model) of $Co^{2+},\;Ni^{2+}$, and $Cu^{2+}$ ions. The synthetic zeolites (Z-C1 and Z-W5) were similarly assigned to XRD peaks in a reagent grade Na-A zeolite (Z-WK : $Na_{12}Al_{12}Si_{12}O_{48}\;27.4H_2O$). Adsorption rates of Z-W5 and Z-C1 were in the order of $Cu^{2+}\;>\;Co^{2+}\;>\;Ni^{2+}\;and\;Ni^{2+}\;>\;Cu^{2+}\;>\;Co^{2+}$, respectively. They had influenced upon structure properties of zeolite. Selectivities of metal ions and maximum equilibrium adsorption capacities, $q_{max}$, in Z-C1 and Z-W5 were in the order of $Ni^{2+}$ (127.9 mg/g) > $Cu^{2+}$ (94.7 mg/g) > $Co^{2+}$ (82.6 mg/g) and $Cu^{2+}$ (141.3 mg/g) > $Co^{2+}$ (122.2 mg/g) > $Ni^{2+}$ (87.6 mg/g), respectively. The results show that the synthetic zeolites, Z-C1 and Z-W5, are able to recover metal ions selectively in wastewater.

결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동 (Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy)

  • 강조원;장우양;양권승
    • 열처리공학회지
    • /
    • 제4권4호
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향 (Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy)

  • 박태현;백민석;윤상일;김진평;이기안
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감 (Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides)

  • 조진오;이상백;장동룡;박종호;목영선
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.375-382
    • /
    • 2014
  • 금속산화물이 담지된 허니컴 형상의 플라즈마-촉매 반응기를 이용하여 아이소프로필 알코올(isopropyl alcohol, IPA) 저감 및 부산물 생성 거동에 대해 조사하였다. 허니컴 형상의 다공질 세라믹 지지체(주성분: ${\alpha}-Al_2O_3$)에 금속산화물로 산화철($Fe_2O_3$) 또는 산화구리(CuO)를 담지시킨 후, 이 촉매가 동축 원통형 전극구조 내부에 위치하도록 플라즈마-촉매 반응기를 구성하였다. 플라즈마 반응에 의한 IPA 분해속도가 매우 빨랐기 때문에 IPA 분해효율 자체는 금속산화물 담지 여부 및 금속산화물 종류에 관계없이 유사한 것으로 나타났으나, 부산물 생성거동은 촉매종류에 따라 큰 차이를 보여주었다. 아세톤, 폼알데하이드, 아세트알데하이드, 메테인, 일산화탄소 등의 유해 부산물 농도는 $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ 순으로 높게 나타났다. 유량 $1L\;min^{-1}$, IPA 초기농도 5,000 ppm(산소: 10%), 방전전력 47 W의 조건에서 얻어진 $CO_2$ 선택도는 ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$, $Fe_2O_3/{\alpha}-Al_2O_3$에 대해 각각 40, 80, 95%로서 $Fe_2O_3/{\alpha}-Al_2O_3$가 플라즈마-촉매를 이용한 IPA의 산화에 가장 효과적인 것으로 나타났다. 플라즈마를 단독으로 사용하여 휘발성유기화합물을 분해할 경우 타르형태의 생성물이 반응기에 퇴적되는 문제점이 있으나, 플라즈마-촉매 공정에서는 이러한 현상이 관찰되지 않았으며 촉매의 활성이 그대로 유지되었다.

CuPc와 $C_{60}$를 이용한 유기 광기전 소자에서 유기층의 두께에 따른 특성 연구 (Organic photovoltaic effects using CuPc and $C_{60}$ depending on the layer thickness)

  • 허성우;오현석;이준웅;이성일;한원근;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 제6회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.43-46
    • /
    • 2004
  • CuPc와 $C_{60}$을 이용하여 ITO/CuPc/Al의 CuPc 단층구조와 $ITO/CuPc/C_{60}/Al$의 이종접합 구조에서의 광기전 특성을 연구하였다. CuPc 단층구조에서는 CuPc층의 두께를 10nm에서 50nm로 가변하여 전압-전류 특성을 측정한 결과 40nm 부근에서 최적화된 전기적인 특성이 나타났으며, $CUPC/C_{60}$의 이종접합 구조에서는 CuPc와 $C_{60}$의 두께 비율을 1 : 1 (20nm : 20nm), 1 : 2 (20nm : 40nm), 1 : 3 (20nm : 60nm)으로 가변하여 측정한 결과, 1 : 2의 두께비에서 최적화된 특성을 얻었다. 광원은 500W Xe lamp(ORIEL 66021)를 이용하였으며, 광원의 세기는 보정된 radiometer/photometer (International Inc. IL14004)와 Si-photodiode로 측정하였다.

  • PDF

Sm 첨가에 따른 Al-Si-Cu 알루미늄 합금의 미세조직 및 열전도도 변화 (Effect of Samarium Addition on Microstructure and Thermal Conductivity of Al-Si-Cu Aluminum Alloy)

  • 최진주;강유빈;임병용;이찬기;김한구;박광훈;김대근
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.31-37
    • /
    • 2020
  • In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 ㎛ were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.

초미세 결정립 Cu-3%Ag 합금의 기계적/전기적 특성 (Mechanical and Electrical Properties of Submicrocrystalline Cu-3%Ag Alloy)

  • 고영건;이철원;남궁승;이동헌;신동혁
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.476-481
    • /
    • 2009
  • The present work demonstrates the mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy as a function of strain imposed by equal channel angular pressing(ECAP). From transmission electron microscope observation, the resulting microstructures of Cu-3%Ag alloy deformed by ECAP for 8-pass or more consist of reasonably fine, equiaxed grains without having a strong preferred orientation, suggesting that microstructure evolution is slower than that of pure-Al and its alloys owing to low stacking fault energy. The results of room temperature tension tests reveal that, as the amount of applied strain increases, the tensile strength of submicrocrystalline Cu-3%Ag alloy increases whereas losing both the ductility and the electrical conductivity. Such phenomenon can be explained based on microstructure featured by the non-equilibrium grain boundaries.

Al2O3 첨가에 따른 Fe계 나노결정립 P/M시트의 전자파 흡수특성 (Electromagnetic Wave Absorption Properties of Fe-based Nanocrystalline P/M sheets with Al2O3 additive)

  • 우수정;조은경;조현정;이재준;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제14권4호
    • /
    • pp.265-271
    • /
    • 2007
  • Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric $Al_{2}O_{3}$ powders and binders. As a result, the addition of $Al_{2}O_{3}$ powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% $Al_{2}O_{3}$ powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder.