• Title/Summary/Keyword: Al-AlN system

Search Result 492, Processing Time 0.025 seconds

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.92-97
    • /
    • 2007
  • This study aims at investigating the wear behavior of thermally sprayed Ni-based self-flux alloy coatings against different counterparts. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then heat-treated at temperature of $1000^{\circ}C$. Dry sliding wear tests were performed using the sliding speeds of 0.2 and 0.8 m/s and the applied loads of 5 and 20 N. AISI 52100, $Al_2O_3$, $Si_3N_4$ and $ZrO_2$ balls were used as counterpart materials. Wear behavior of Ni-based self-flux alloy coatings against different counterparts were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Ni-based self-flux alloy coatings were much influenced by counterpart materials.

  • PDF

Barrier-Transition Cooling in LED

  • Kim, Jedo
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.44-51
    • /
    • 2013
  • This paper proposes and analyzes recycling of optical phonons emitted by nonradiative decay, which is a major thermal management concern for high-power light emitting diodes (LED), by introducing an integrated, heterogeneous barrier cooling layer. The cooling is proportional to the number of phonons absorbed per electron overcoming the potential barrier, while the multi-phonon absorption rate is inversely proportional to this number. We address the theoretical treatment of photon-electron-phonon interaction/transport kinetics for optimal number of phonons (i.e., barrier height). We consider a GaN/InGaN LED with a metal/AlGaAs/GaAs/metal potential barrier and discuss the energy conversion rates. We find that significant amount of heat can be recycled by the barrier transition cooling layer.

Liquid-Phase Sintered SiC Ceramics with Oxynitride Additives

  • Rixecker, G.;Biswas, K.;Wiedmann, I.;Sldinger, F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.1-33
    • /
    • 2000
  • Silicon carbide ceramics with sintering additives from the system AlN-Y$_2$O$_3$ can be gas-pressure sintered to theoretical density. While commonly a combination of sesquioxides is used such as Al$_2$O$_3$-Y$_2$O$_3$, the oxynitrid additives offer the advantage that only a nitrogen atmosphere is require instead of a powder. By starting form a mixture of ${\beta}$-SiC and ${\alpha}$-SiC, and by performing dedicated heat treatments after densification, anisotropic grain growth is obtained which leads to a platelet microstructure showing enhance fracture toughness. In the present work, recent improvement of the mechanical behaviour of these materials at ambient and high temperatures is reported. By means of a surface oxidation treatment in air it is possible to obtain four-point bending strengths in excess of 1 GPa, and the strength retention at high temperatures is significantly improved.

  • PDF

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system

  • Yaylaci, Ayla;Karaarslan, Emine Sirin;Hatırli, Huseyin
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.261-269
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the radiopacities of various types of restorative materials with different thicknesses compared with enamel, dentin, and aluminum. Materials and Methods: Four bulk-fill resins, 2 hybrid ceramics, 2 micro-hybrid resin composites, 6 glass ionomer-based materials, 2 zinc phosphate cements, and an amalgam were used in the study. Twelve disk-shaped specimens were prepared from each of 17 restorative materials with thicknesses of 1 mm, 2 mm, and 4 mm (n=4). All the restorative material specimens with the same thickness, an aluminum (Al) step wedge, and enamel and dentin specimens were positioned on a phosphor storage plate and exposed using a dental X-ray unit. The mean gray values were measured on digital images and converted to equivalent Al thicknesses. Statistical analyses were performed using 2-way analysis of variance and the Bonferroni post hoc test(P<0.05). Results: Radiopacity was significantly affected by both the thickness and the material type (P<0.05). GCP Glass Fill had the lowest radiopacity value for samples of 1 mm thickness, while Vita Enamic had the lowest radiopacity value for 2-mm-thick and 4-mm-thick samples. The materials with the highest radiopacity values after the amalgam were zinc phosphate cements. Conclusion: Significant differences were observed in the radiopacities of restorative materials with different thicknesses. Radiopacity was affected by both the material type and thickness.

Synthesis of Symmetric 1-D 5-neighborhood CA using Krylov Matrix (Krylov 행렬을 이용한 대칭 1차원 5-이웃 CA의 합성)

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1105-1112
    • /
    • 2020
  • One-dimensional 3-neighborhood Cellular Automata (CA)-based pseudo-random number generators are widely applied in generating test patterns to evaluate system performance and generating key sequence generators in cryptographic systems. In this paper, in order to design a CA-based key sequence generator that can generate more complex and confusing sequences, we study a one-dimensional symmetric 5-neighborhood CA that expands to five neighbors affecting the state transition of each cell. In particular, we propose an n-cell one-dimensional symmetric 5-neighborhood CA synthesis algorithm using the algebraic method that uses the Krylov matrix and the one-dimensional 90/150 CA synthesis algorithm proposed by Cho et al. [6].

AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS (Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구)

  • Woo, Jin-Oh;Park, Bong-Wook;Byun, June-Ho;Kim, Seung-Eon;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.

Effect of Phase Stabilizers on the Phase Formation and Sintering Density of $Na^+$-Beta-Alumina Solid Electrolyte (상 안정화제가 $Na^+$-Beta-Alumina 고체 전해질의 상 형성 및 소결밀도에 미치는 영향)

  • Lee, Ki-Moon;Lee, Sung-Tae;Lee, Dae-Han;Lee, Sang-Min;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.534-538
    • /
    • 2012
  • $Na^+$-beta-alumina solid electrolyte was synthesized by solid state reaction using $Li_2O$ and MgO as a phase stabilizer, and the effect of stabilizers on the phase formation and sintering density was investigated. In order to determine the phase fraction according to the synthesizing temperature, the molar ratio of [$Na_2O$] : [$Al_2O_3$] was fixed at 1 : 5, and calcination was conducted at temperatures between $1200{\sim}1500^{\circ}C$ for 2 h. In the $Li_2O$-$Na_2O$-$Al_2O_3$ ternary system, ${\beta}^{{\prime}{\prime}}$-alumina phase fraction considerably increased by the secondary phase transition at $1500^{\circ}C$, whereas it maintained similarly in the MgO-$Na_2O$-$Al_2O_3$ system. Additionally, the disc-type specimens of $Na^+$-beta-alumina were sintered at the temperature between $1550{\sim}1650^{\circ}C$ for 30 min, and relative sintering densities, phase changes, and microstructures were analyzed. In case of $Li_2O$-stabilized $Na^+$-beta-alumina, ${\beta}^{{\prime}{\prime}}$-phase fraction and relative density of specimen sintered at $1600^{\circ}C$ were 94.7% and 98%, respectively. Relative density of MgO-stabilized $Na^+$-beta-alumina increased with a rise in sintering temperature.

Analysis and Design of half-mirror coating for sunglasses (썬글라스용 반미러(Half-Mirror) 코팅의 분석과 설계)

  • Park, Moon-Chan;Jung, Boo-Young;Hwangbo, Chang-Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • We collected the domestic and foreign half-mirror coating lens for sunglasses. Their reflectance is measured using Spectrophotometer in order to analysis their optical property and the result which is calculated using Macleod program was compared with measured reflectance. In addition, we designed the new half-mirror coating lens with gold color using TiN material and investigated the optical property of the new half-mirror coating lens. The results obtained from analysis of half-mirror coating lenses are as follow : Two-tone half-mirror coating with silver color is fabricated with [air|$SiO_2$(or $Al_2O_3$)|Cr|glass]. The role of $SiO_2$(or $Al_2O_3$) on Cr improve the hardness of the lens and the thickness of the $Al_2O_3$ with 10 nm is good to show the lens silver color. Incase of color half-mirror coating lens. Blue system is designed by [air|$SiO_2$(66.3)|$TiO_2$(129.0)|$SiO_2$(62.9)|$SiO_2$(26.0)|$TiO_2$(120.3)|$SiO_2$(9.1)|glass], gold system [air|$SiO_2$(60.6)|$TiO_2$(86.2)|$SiO_2$(13.5)|$TiO_2$(86.8)|$SiO_2$(214.38)|glass], green system[air|$SiO_2$(74.3)|$TiO_2$(75.8)|$SiO_2$(44.3)|$TiO_2$(11.6)|$SiO_2$(160.8)|$TiO_2$(12.9)|$SiO_2$(183.3)|$TiO_2$(143.8)|glass], silver system[air|$SiO_2$(21.2)|$TiO_2$(49.7)|$SiO_2$(149.3)|glass]. White half-mirror coating lens has [air|$SiO_2$(17 nm)|$TiO_2$(43 nm)(or $ZrO_2$)|$SiO_2$(87 nm)|polysiloxane($4.46{\mu}m$|glass or CR-19]. It has half-mirror coaling lens which has about 19% reflectance and about 80% transmittance in the range of visible light(400~700nm). we designed the new half-mirror coating lens with gold color, the (x, y) value of the CIE is almost similar to the CIE value of [air|$SiO_2$(170 nm)|TiN(15 nm)|glass].

  • PDF

The Relationship Between the Permeation Rate and the Solubility Parameter for Polyethylene-n-Hexane-Benzene System in Pervaporation (폴리에틸렌-n-헥산-벤젠계에 대한 투과속도와 용해도 파라메타 사이의 관계)

  • Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.136-139
    • /
    • 1993
  • It is well known that the membrane permeation in pervaporation is governed by both the chemical nature of the membrane material and the physical structure of the membrane and also the separation can be achieved by differences in either solubility, size or shape. The solubility of the penerrant in the polymeric membrane can be described qualitively by applying the Hildebrand relation [1] which relates the energy of mixing of the penerrant and the polymer material. Froehling et al. have tried to predict the swelling behavior of polymers for the systems of polyvinylchloride(PVC)-toluene-methanol, PVC-trichloroethylene-nitromethane and PVC-n-butylacetate-nitromethane[2]. The former two systems which do not show the donor/acceptor interactions upon mixing showed the successful results[2]. In addition to this technique, there are several other possible approaches to predict the swelling behaviors of polymers, such as the surface thermodynamic approach[3, 4], the comparison of the membrane polarity with the solvent polarity in terms of Dimroth's solvent polarity value[5].

  • PDF