• 제목/요약/키워드: Al ship

검색결과 136건 처리시간 0.03초

선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성 (Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度) (On the Effective Shear Rigidity in Ship Vibration Analysis)

  • 김극천;최수현
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

CFD Simulation about Green Water on a Fixed FPSO in Regular Waves

  • Ha, Yoon-Jin;Nam, Bo Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.174-183
    • /
    • 2017
  • Numerical simulations were performed about the green water problem of a FPSO. Three regular waves in head sea were tested. A rectangular box-shaped FPSO was considered and it is assumed there is a vertical wall on the deck. For the numerical simulations, an open-source CFD code, OpenFOAM, was applied to solve the present problems. Focus is on wave fields around the FPSO, water flows and impact pressures on the deck. For the validation, the present calculation results were compared with the existing experimental of Lee et al. (2012) and Changwon university in KTTC Cooperative Study Report (2015). The statistical values and spatial distribution of the peak pressures are directly compared with the experimental data. Some discussions are made on the effects of the domain breadth on the Green water impact pressure.

선체주위 자유수면 유동 해석을 위한 VOF법 연구 (A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS)

  • 박일룡
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

Iceberg-Ship Classification in SAR Images Using Convolutional Neural Network with Transfer Learning

  • 최정환
    • 인터넷정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.35-44
    • /
    • 2018
  • Monitoring through Synthesis Aperture Radar (SAR) is responsible for marine safety from floating icebergs. However, there are limits to distinguishing between icebergs and ships in SAR images. Convolutional Neural Network (CNN) is used to distinguish the iceberg from the ship. The goal of this paper is to increase the accuracy of identifying icebergs from SAR images. The metrics for performance evaluation uses the log loss. The two-layer CNN model proposed in research of C.Bentes et al.[1] is used as a benchmark model and compared with the four-layer CNN model using data augmentation. Finally, the performance of the final CNN model using the VGG-16 pre-trained model is compared with the previous model. This paper shows how to improve the benchmark model and propose the final CNN model.

마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성 (The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy)

  • 김성종;한민수;장석기
    • 해양환경안전학회지
    • /
    • 제18권3호
    • /
    • pp.273-278
    • /
    • 2012
  • 선박 구조재료 FRP 재료의 대체 재료로 빠른 선속과 선적량 증가는 물론 재활용이 용이한 Al 선박으로 전환되고 있다. 본 논문에서는 인장실험을 통해 레저선박에 사용되는 5456-H116 합금에 대한 최적의 마찰교반용접 조건에서 프루브 직경의 효과를 기술하였다. 마찰교반용접에서 이송속도, 회전속도를 변수로 5 mm의 프루브 직경을 사용하여, 이송속도가 61 mm/min의 조건에서 가장 우수한 결과를 나타냈다. 프루브 직경 6 mm, 회전속도 170-210 rpm, 이송속도 15 mm/min 에서는 낮은 회전속도로 인하여 불충분한 용접열이 발생하여 거친 표면과 기공이 형성 되었다. 회전속도 500-800 rpm인 경우, 용접부에 칩이 관찰되었으며, 기공은 생기지 않았고, 용접표면은 우수하였으나 1100-2500 rpm에서는 지나친 용접열의 발생으로 많은 칩이 발생하였다. 열에 의한 영향은 용접 배면에서 관찰되었다. 이송속도가 15 mm/min에서 회전속도의 증가하게 되면 마찰이 증가함에 따라 용접열이 발생한다. 기계적 특성은 용접 입열량이 증가할수록 재질의 연화가 가속화되어 저하하였다.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

선박용 재료인 5083-H116에 대한 해수에서 정전위 저변형율 인장시험에 의한 최적방식 전위 결정 (Investigation on optimum protection potential decision by potentiostatic SSRT in sea water of 5083-H116 for Al ship)

  • 우용빈;손정호;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.213-213
    • /
    • 2009
  • 선박 건조시에 사용되는 알루미늄 합금은 환경친화적인 재료로 각광을 받고 있으며, FRP 선박의 대체재료로 부각되고 있다. 선박 운항시 해수 환경하에서 선체의 부식을 방지하기 위해 도장 뿐만아니라 희생양극이나, 음극방식 등은 필수불가결한 사항이다. Al-Mg 합금인 5083-H116에 대한 천연 해수 용액에서 저변형율 인장시험을 통한 응력부식균율이나 수소취화의 영향이 없는 최적의 방식 전위를 결정하였다.

  • PDF

A Study on the Dissipation Energy of Plate due to Cutting

  • Lee, J. W.;Hong, S. J.
    • Journal of Ship and Ocean Technology
    • /
    • 제1권1호
    • /
    • pp.48-56
    • /
    • 1997
  • This paper deals with the energy dissipation of ductile metal plate due to cutting. By using nondimensional analysis, we present that the dissipation energy of tearing behaviour can be formulated as a function of slenderness ratio expressed by cutting length, yield stress, plate thickness and elastic modulus. The validity of the proposed formula for Al-alloy, copper and mild steel is demonstrated by comparing the proposed formula with experimental results, which are shown in good agreements except for thick mild steel plate.

  • PDF

Buckling Strength Analysis of Box-Column Including the Coupling Effect Between Local and Global Buckling

  • Paik, Jeom-K.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1988년도 가을 학술발표회 논문집
    • /
    • pp.36-42
    • /
    • 1988
  • In this study, a formulation of the idealized plate element based upon the idealized structural unit method(ISUM) firstly proposed by Ueda et.al is made in an attempt to analyze the geometric nonlinear behaviour up to the buckling strength of thin-walled long structures like box-column structure including the coupling effect between local and global buckling. An application to the example box-column is also performed and it is found that the present method gives reliable results with consuming very short computing times and therefore is very useful for evaluation of the buckling strength of thin-walled long structures.

  • PDF