• Title/Summary/Keyword: Al reducing agent

Search Result 41, Processing Time 0.024 seconds

Study on the Reaction Behavior of Self-reducing TiO2 Briquette (자기 환원성 TiO2 단광의 반응특성에 관한 연구)

  • Baek, S.J.;Shin, D.Y.;Min, J.W.;Choi, S.O.;Yun, D.J.;You, B.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.615-620
    • /
    • 2006
  • The reduction behavior of $TiO_{2}$ in Al and Al/CaSi containing self-reducing $TiO_{2}$ briquettes(SRTB) was investigated. The maximum yield of Ti was expected with the slag composition of 45-55%CaO in the $CaO-Al_{2}O_{3}$ system. When $CaCO_{3}$ was used as a flux, the oxidation loss of reducing agent by $CO_{2}$ should be compensated, and therefore it leads to excessive requirement of the reducing agent. By using Al and CaSi mixture as a reducing agent of $TiO_{2}$, the reaction products both oxide and metal could be liquefied, and separated effectively with each other. As a result, the yield of Ti increases remarkably. The optimum mixing ratio of CaSi to Al is 78%CaSi-22%Al.

Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation (알루미나 수화물로부터 탄소환원질화법에 의한 질화알루미늄 분말의 합성)

  • 황진명;정원중;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.893-901
    • /
    • 1994
  • In this study, AlN powder of fine particle size and of high purity was synthesized by the carbothermal reduction-nitridation of monodisperse, spherical Al(OH)3 which had been prepared by sol-gel method using Al(O-sec-C4H9)3 as the starting material. Depending on the mixing order and kinds of reducing agents, the optimum condition for the preparation of AlN was determined as follows. AlN single-phase was produced by the carbothermal reduction-nitridation of (1) Benzene-washed Al(OH)3 and the reducing agent, carbon, which was mixed in a ball mill: for 5 hours at 140$0^{\circ}C$ under NH3 atmosphere; (2) The mixture prepared by hydrolysis of alkoxide solution into which carbon had been dispersed beforehand: for 5 hours at 135$0^{\circ}C$ ; (3) Al(OH)3 Poly(furfuryl alcohol) composite powder: for 2.5 hours at 135$0^{\circ}C$; (4) The mixture of Al(OH)3 and polyacrylonitrile: for 5 hours at 140$0^{\circ}C$. Addition of CaF2 increased the nitridation rate when carbon or polyacrylonitrile was used as the reducing agent; but it had no effect on the nitridation rate when furfuryl alcohol was used as the reducing agent.

  • PDF

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Electroless Plated Copper Thin Film for Metallization on Printed Circuit Board : Neutral Process (인쇄회로기판상의 금속 배선을 위한 구리 도금막 형성 : 무전해 중성공정)

  • Cho, Yang-Rae;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.661-665
    • /
    • 2013
  • We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of $CuSO_4{\cdot}5H_2O$ as the main metal source, $NaH_2PO_2{\cdot}H_2O$ as the reducing agent, $C_6H_5Na_3O_7{\cdot}2H_2O$ and $NH_4Cl$ as the complex agents, and $NiSO_4{\cdot}6H_2O$ as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using $NH_4OH$. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at $70^{\circ}C$. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.

Preparation of Aluminum Nitride from an Alkoxide and its Properties (알콕사이드로부터 AlN분말의 합성 및 분말 특성)

  • 이홍림;박세민;조덕호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.100-108
    • /
    • 1989
  • Aluminum hydroxides were prepared by the alkoxide hydrolysis method using Al-isopropoxide as a starting material and NH4OH as a catalytic agent. When Al-isopropoxide was hydrolyzed in a H2O-NH3 system, only Al(OH)3 was obtained over all pH values. However, AlOOH was formed besides Al(OH)3 when Al-isopropoxide was hydrolyzed in a H2O-NH3-isopropyl alcohol system. The AlOOH/Al(OH)3 ratio was increased as the isopropyl alcohol content was increased. The hydroxides, Al(OH)3 and AlOOH, obtained in this study and the commerical products, $\alpha$-Al2O3 and AlOOH were subjected to the carbothermal reduction and nitridation reaction to product AlN powder, using carbon black as a reducing agent under N2 atmosphere at various temperatures. AlN was synthesized from the obtained Al(OH)3 and the commercial AlOOH at 145$0^{\circ}C$, however, synthesized from the obtained AlOOH and the commercial alpha-alumina at 135$0^{\circ}C$. The temperature difference is assumed to be attributed to the reactivity of those powders. AlN powder prepared from the Al-isopropoxide was observed to have the narrower particle size distribution than that prepared from the commercial $\alpha$-Al2O3 or AlOOH.

  • PDF

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

A Study on Tracking Degradation Properties of Silicone Rubber due to Reinforcing Agent (보강제 변화에 따른 실리콘 고무의 트래킹 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.841-846
    • /
    • 2014
  • It found that the maximum temperature of the arc discharge occurred on the Silicone rubber sample significantly decreased with increasing the reinforcing agent. It was confirmed that the current value decreased with increasing the aluminium trihydrate($Al(OH)_3$) and the current value increased with reducing the primary resistance over time. Regarding these results, may be it is because the degradation due to the electro-conductive carbonization was improved and the properties of dielectric breakdown was reduced by the flame retardant reinforcing agent. It found that the electro-conductive carbonized road has not happened by increasing the flame retardant reinforcing agent. Regarding to the arc discharge, this study show that the arc arising near the lower electrode of sample has disappeared.