• Title/Summary/Keyword: Al foam

Search Result 114, Processing Time 0.024 seconds

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay;Lim, Hyung Mi;Lee, Kee Sung;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.513-520
    • /
    • 2019
  • This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM (접시형 태양열 집광 시스템을 이용한 열화학 사이클의 수소생산)

  • Kwon, Hae-Sung;Oh, Sang-June;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.169-176
    • /
    • 2011
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction)and W-D (Water Decomposition)steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $NiFe_2O_4/m-ZrO_2$powder, was successfully achieved hydrogen production with 9 (10 with a Xe-light solar simulator, 2009, Kodama et al.) repeated cycles under field conditions. Two foam device used in this study were tested for validation before an experiment was performed. The lab scale ferrite-conversion rate was in the range of 24~76%. Two foam devices were designed to for structural stability in this study. In the results of the experiments, the hydrogen percentage of the weight of each foam device was 7.194 and $9.954{\mu}mol\;g^{-1}$ onaverage, and the conversion rates 4.49~29.97 and 2.55~58.83%, respectively.

  • PDF

Catalytic Detoxication of Coal Combustion Gases (연탄 연소가스의 촉매제독에 관한 연구)

  • Tuwon Chang;Young Sun Uh;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.656-663
    • /
    • 1985
  • A catalytic conversion of carbon monoxide has been studied in a coal combustion system. Three different catalysts were prepared by impregnating 0.2% platinum on three different types of supports, ${\gamma}-Al_2O_3$ pellets, ceramic foam and honeycomb. These catalysts have shown an excellent initial activities in the coal combustion system, but they were rapidly deactivated in repeated uses. Among these catalysts ceramic foam has shown to be better than others both in activities and durabilities. The main cause of deactivation seems to be ascribed to poisoning by zinc metal and sulfur compounds and to decrease in platinum surface area by sintering.

  • PDF

Direct Numerical Simulations of Turbulent Boundary Layer using OpenFOAM and Adapted Mesh (OpenFOAM과 어댑티드 격자를 이용한 난류 경계층의 직접 수치 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • Direct numerical simulations of a spatially developing turbulent boundary layer on a flat plate have been performed to verify the applicability of OpenFOAM and adapted mesh with prism layers to turbulent numerical simulation with high fidelity as well as provide a guideline on numerical schemes and parameters of OpenFOAM. Reynolds number based on a momentum thickness at inlet and a free-stream velocity was Reθ=300. Time dependent inflow fields with near-wall turbulent structures were generated by a method of Lund et al. (1998), which was to extract instantaneous velocity fields from an auxiliary simulation with rescaled and recycled velocities at inlet. To ascertain the statistical characteristics of turbulent boundary layer, the mean profiles of streamwise velocity and turbulent intensities obtained from structured and adapted meshes were compared with the previous data.

Evaluation of Mechanical Compressive Properties of Al-Si-Cu-Mg Alloy Foams Using Electrical Conductivity (전기전도도를 이용한 Al-Si-Cu-Mg 합금 품의 기계적 압축 특성 평가)

  • Lee, Chang-Hun;Kim, Am-Kee;Ha, San;Nahm, Seung-Hoon;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.377-381
    • /
    • 2004
  • Electrical conductivity of Al-Si-Cu-Mg alloy foams of various density produced in powder metallurgical method has been measured using two probe electrical conductivity measurement method. Compressive mechanical properties such as elastic modulus and plastic plateau stress of foams were evaluated from electrical conductivity using power law relation and scaling laws of foam properties. Uni-axial compression test was also performed. Experimentally measured elastic modulus and plastic plateau stress were compared with the values evaluated from electrical conductivity. The computed values were in good agreement with the experimental result.

  • PDF

The Effect of Thickening Agent on Foaming and Mechanical Properties of A356 Alloy (A356 합금의 발포 특성 및 기계적 성질에 미치는 점증제의 영향)

  • Tak, Byeong-Su;Kim, Byeong-Gu;Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.241-246
    • /
    • 2010
  • The viscosity of foam metal is necessary to get the pores, but it is difficult to manufacture net-shape foam, because the fluidity decreases by increasing viscosity. In this study, the A356 alloy which has good fluidity and less defect was selected and fabricated to foam metal. To understand about effect of thickening agent on foaming and mechanical properties, quantity of thickening agent was changed. The pore size, porosity and distribution of foam metal were measured by i-solution program. And compression test were performed by UTM. In case of 3.0wt% Ca in thickening agent, it is found that most of foam consist of homogeneous shape, and the growth height had the highest value of 204 mm in the all fabricated foams. The porosity was 93% and compressive strength was 3.1 MPa. In the microstructure, the $Al_2Si_2Ca$ intermetallic compound and Ti were observed. The vickers hardness value rose with increasing viscosity value.

Mechanical Properties of the Foamed Aluminum According to the Quantity of Calcium (칼슘 첨가량에 따른 발포 알루미늄의 기계적 성질)

  • Do Bok-Hwan;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • In this work, we observed the changes in mass difference according to Al-foam's amount of Ca contents which depends on the viscosity control of fusion, quality of foamed addition, mixing, temperature tests. These are crucial influencing factors in determining foam-metal's size in the manufacturing process. In order to obtain the specimen, we changed the specific gravity from 0.2 to 0.3 for the study of the light weight, and obtained the optimal values of specific gravity, and then showed the mechanical characteristics of ultra-lightweight metal according to the changing mass. The optimal conditions for aluminum foam is when the addition of Ca content in $1.5wt\%~2.0wt\%$

Fabrication and Evaluations of Hydrogenation Properties of TiH2/TiH2-Al agents on Aluminum Foam Alloy (알루미늄 발포용 TiH2/TiH2-Al의 제조와 수소화 특성 평가)

  • Hong, T.-W.;Cho, G.-W.;Kweon, S.-Y.;Kim, I.-H.;Lee, J.-I.;Ur, S.-C.;Lee, Y.-G.;Ryu, S.-L.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.235-243
    • /
    • 2004
  • A number of potential applications of aluminum foams are being identified and renewed interest in these engineering materials is also reflected by several current research projects. One of the key issues for industrial exploitation of aluminum foams is the development of cost-effective manufacturing strategies facilitating, preferably, net shape production of foams with controlled porosity and cell size, and minimized structural imperfection. Especially, melt route to aluminum foam production based on the foaming agents offer attraction of low cost and the potential for good microstructure. The present paper is focused mainly on foaming agents of melt-foam aluminum such as $TiH_2$ or $TiH_2-Al$ mixture. For the purpose of economical manufacturing, we are proposed to hydrogen induced mechanical alloying (HIMA) process. Thermo-physical properties of particles synthesized are compared with conventional methods. Specimens synthesized are characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), thermo- gravimetry-differential scanning calorymetry (TG-DSC), pressure-composition-isotherm. (PCI).

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.