• 제목/요약/키워드: Al electrode

검색결과 643건 처리시간 0.027초

Al 하부전극을 이용한 AlN 박막의 제작 (Preparation the AlN thin films with the Al bottom electrode)

  • 김건희;금민종;김현웅;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.101-104
    • /
    • 2004
  • In this study AlN/Al thin films were prepared at various conditions, such as $N_2$ gas flow rate $[N_2/(N_2+Ar)]$ from 0.6 to 0.9, a substrate temperature ranging from room temperature to $300^{\circ}C$ and working pressure 1mTorr. We estimated crystallographic characteristics and c-axis preferred orientations of AlN/Al thin films as function of Al electrode surface roughfness. The optimal processing conditions for Al electrode were found at substrate temperature of $300^{\circ}C$, sputtering power of 100W and a working pressure of 2mTorr. In these conditions, we obtained the c-axis preferred orientation of $AlN/Al/SiO_2/Si$ thin film about 4 degree.

  • PDF

OLED용 Al 음전극 제작 및 I-V 특성

  • 금민종;권경환
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.102-105
    • /
    • 2005
  • In this study Al electrode for OLED was deposited by FTS(Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell (LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar, Kr or mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr ). The film thickness and I-V curve of Al/cell were evaluated by $\alpha$-step and semiconductor parameter (HP4156A) measurement.

  • PDF

3차원 전극(Bipolar Packed Bed Electrode)을 이용한 호소수 처리(II) (Advanced Lake Water Treatment with Bipolar Packed Bed Electrode Cell(II))

  • 장철현;박상우;최창수
    • 한국환경과학회지
    • /
    • 제11권4호
    • /
    • pp.355-360
    • /
    • 2002
  • This study was to analyze the right of wrong of gray-water treatment by applying BPBE electrode cell to the effluence water in the terminal disposal plant of sewage. The results were as follows : The best result was obtained with applied voltage 40V and detention time 6 minutes for the BPBE electrode cell which has the graphite-plate in main electro-de, packing coconut activated carbon. The elimination rate of COD of Al-plate was higher than that of graphite-plate in main electrode. The result of electrolysis for 3 hour in parallel circuit showed the using possibility of gray-water according to each elimination rate : COD 59%, T-N 69 %, T-P 69%. The BPBE electrode cell with the Al-plate in main electrode made the best effect for the elimination of algae in lake water and algae were not occurred in electrolytic water.

Glass-Al2O3 복합소재를 원료로 한 LTCC 다층회로 기판의 제조 (Fabrication of LTCC Multi-layer Circuit Board made of Glass-Al2O3 Composites)

  • 곽훈;전형도;김환;이원재;신병철;김일수
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.509-516
    • /
    • 2008
  • Multi-layer circuit card for semiconductor inspection was fabricated by LTCC technology. After a proper impedance design without electrical interference, ceramic tapes with the composition of $CaO-Al_2O_3-SiO_2-B_2O_3$ glass and $Al_2O_3$ were prepared. The electrode with silver paste printed on the tape. Printed ceramic sheets were then laminated and sintered. Densities and dielectric properties were measured. The microstructure, fracture surface of the region of via and matching state of substrate-electrode were observed. The durability of plated outside electrode were examined by hardness and scratch test.

ZnO:Al 과 ITO 투명전도막을 이용한 플랙시블 타입 DSCs변환효율 특성 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:AI / ITO TCO layers)

  • 김지훈;곽동주;성열문;김태우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.177-179
    • /
    • 2009
  • In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode, ZnO:Al films were prepared by RF magnetron sputtering method. The effects of surface treatment and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the transparent conducting oxide electrode were measured and compared with each other. By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a chemical surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. And DBD surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. Although the luminance and luminous efficiency of the transparent conducting oxide electrode using ZnO:AI are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of TCO.

  • PDF

게이트 전극 물질이 a-IGZO 박막트랜지스터의 전기적 특성에 미치는 영향 (Effect of gate electrode material on electrical characteristics of a-IGZO thin-film transistors)

  • 오현곤;조경아;김상식
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.170-173
    • /
    • 2017
  • 본 연구에서는 Al, Mo 및 Pt 금속 물질을 a-IGZO 박막트랜지스터의 게이트 전극으로 플라스틱 기판 위에 형성하여 제작하고, 게이트 물질에 따른 전기적 특성을 측정하였다. Al 게이트 전극에 비해 Pt 게이트 전극을 사용한 박막트랜지스터의 문턱전압은 -4.1V에서 -0.3 V까지 감소하였고, 전하이동도는 $15.8cm^2/V{\cdot}s$에서 $22.1cm^2/V{\cdot}s$ 로 향상되었다. 게이트 전극에 따른 박막트랜지스터의 문턱전압 이동은 전극의 일함수와 채널층의 페르미 에너지 차이로 인한 영향이라는 것을 확인 할 수 있었다. 또한, 채널 물질의 페르미 에너지를 고려하였을 경우에 Pt 게이트 전극이 박막트랜지스터의 전기적 특성 면에서 적합한 물질로 확인되었다. 추가적으로 Mo 게이트 전극을 사용한 박막트랜지스터에 대한 특성도 본 논문에서 다룬다.

Electrode Thickness Optimization at Full Color OLED and Analysis of Power Consumption

  • Park, Sung-Joon;Kim, Ok-Tae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권3호
    • /
    • pp.106-110
    • /
    • 2004
  • The operating condition of the OLED (organic light-emitting diode) is very sensitive to electrode thickness properties. The electrode thickness is a significant issue in the construction of OLEDs because of its transparency, high conductivity and high efficiency as an injector into organic materials. We carried out a systematic study to optimize the electrode thickness conditions in Indiumtin oxide (ITO), Molybdenum (Mo) and Aluminum (Al). Further, we measured electrode thickness under standard conditions [ITO 1500$\AA$, Mo 2600$\AA$, Al 1500$\AA$]. We also evaluated power consumption. In addition, we analyzed substrate uniformity with IVL measurement results. From these results, it is known that the electrode thickness should be optimized in order to accomplish optimal power efficiency.

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers)

  • 김지훈;추영배;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

전기분해에 의한 염색폐수 처리공정에 관한 연구 (A study on dye wastewater treatment using the electrolysis)

  • 김성국;박상원;홍대일
    • 한국환경과학회지
    • /
    • 제8권4호
    • /
    • pp.539-545
    • /
    • 1999
  • Dye wastewater was treated by using an electrochemical oxidation process. Various combinations of electrodes such as carbon, Al and Fe were investigated. In this study, electrode material, electrolyte concentration, electrode distance, current density, and pH value were found to have significant effect on both pollutant removal efficiency and current efficiency in electrochemical oxidation process. After electrolysis for 40min with carbon/Al, it was observed that COD, $T-N, NH_{4}^{+}-N$ and color of treated wastwater were reduced from 580mg/$\ell$ to 145mg/$\ell$, 67.2mg/$\ell$ to 26.8mg/$\ell$, 46.8mg/$\ell$ to 1.4mg/$\ell$, and 4200 Pt-Co units to 336 Pt-Co units, respectively. The optimal conditions of the electrooxidation process to treat the wastewater for this study were found to be such : current density ; 16.67mA/$cm^2$, electrode distance ; 2.5cm, pH value ; 5.0 and carbon/Al electrode.

  • PDF