• 제목/요약/키워드: Al alloy powder

검색결과 385건 처리시간 0.02초

가스 분무법을 이용한 Powder Bed Fusion(PBF) 공정용 AlSi10Mg 합금 분말 제조 (Manufacture of AlSi10Mg Alloy Powder for Powder Bed Fusion(PBF) Process using Gas Atomization Method)

  • 임원빈;박승준;윤여춘;김병철
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.120-126
    • /
    • 2021
  • In this study, AlSi10Mg alloy powders are synthesized using gas atomization and sieving processes for powder bed fusion (PBF) additive manufacturing. The effect of nozzle diameter (ø = 4.0, 4.5, 5.0 and 8.0 mm) on the gas atomization and sieving size on the properties of the prepared powder are investigated. As the nozzle diameter decreases, the size of the manufactured powder decreases, and the uniformity of the particle size distribution improves. Therefore, the ø 4.0 mm nozzle diameter yields powder with superior properties. Spherically shaped powders can be prepared at a scale suitable for the PBF process with a particle size distribution of 10-45 ㎛. The Hausner ratio value of the powder is measured to be 1.24. In addition, the yield fraction of the powder prepared in this study is 26.6%, which is higher than the previously reported value of 10-15%. These results indicate that the nozzle diameter and the post-sieve process simultaneously influence the shape of the prepared powder as well as the satellite powder on its surface.

나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성 (Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite)

  • 남궁석;오승탁;이재성;정영근;김형섭
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF

자동차 경량 부품 제조를 위한 Al-Cu-Mg 분말 합금의 소결 및 열처리 특성 (Sintering and Heat Treatment Characteristics of Al-Cu-Mg Powder Metallurgy Alloy for Lightweight Automotive Parts)

  • 안병민
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.152-156
    • /
    • 2014
  • Lightweight materials such as aluminum and magnesium have recently received much attention in the automotive industries because of environmental and fuel-efficiency concerns. Using the powder metallurgy (PM) process for these materials creates significant opportunities for the cost-effective manufacture of lightweight automotive parts. In the present study, an Al-Cu-Mg alloy was fabricated using conventional PM processes. Primarily, the effects of the alloying elements on the sintering characteristics and mechanical behavior after heat treatment were investigated. A microstructural analysis was performed using an optical microscope and a scanning electron microscope to investigate the behavior of liquid phase sintering, including the formation of precipitates. The dependence of the mechanical behavior on the alloying elements was evaluated based on the transverse rupture strength.

다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화 (Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

전기선 폭발법에 의하여 제조된 Al-Ni 합금 나노분말의 선택적 침출 (The Selective Leaching of Al-Ni Alloy Nano Powders Prepared by Electrical Wire Explosion)

  • 박제신;김원백;서창열;장한권;안종관;김병규
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.308-313
    • /
    • 2008
  • Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.

Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가 (Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy)

  • 신기승;현용택;박노광;박용호;이동근
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

RF 스퍼터링용 Hydroxyapatite 타겟의 제조 및 Hydroxyapatite/Ti-6Al-4V 합금 박막의 특성(I) (The Fabrication of Hydroxyapatite Targets and the Characteristics of Hydroxyapatite/Ti-6Al-4V Alloy Thin Films by RF Sputtering(I))

  • 정찬회;김명한
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.205-212
    • /
    • 2003
  • RF sputtering process was applied to produce thin hydroxyapatite[HA, Ca10($PO_4$)$_{6}$ $ (OH)_2$films on Ti-6Al-4V alloy substrates. To make a 101.6 mm dia.${\times}$5 mm HA target, the commercial HA powder was first calcinated for 3h at $200^{\circ}C$. A certain amount of the calcinated HA powder was pressed under a pressure of 20,000 psi by the cold isostatic press(CIP) and the pressed HA target was sintered for 6 h at $1,200^{\circ}C$. The effects of different heat treating conditions on the bonding strength between HA thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the alloy substrates were annealed for 1 h at $850^{\circ}C$ under $3.0${\times}$10^{-3}$ Xtorr, and after deposition, the hydroxyapatite/Ti-6Al-4V alloy thin films were annealed for 1 h at 400, 600 and $800^{\circ}C$ under the atmosphere, respectively. Experimental results represented that the HA thin films on the annealed substrates had higher hardness than non-heat treated substrates before the deposition.

회전원반분사법에 의한 CuA1Ni계 합금 분말제조 (Powder Production of CuAINi Base Alloy via Rotating Disk Atomization)

  • 류봉선
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.145-152
    • /
    • 1994
  • Atomizing mode and powder characteristics of CuA1Ni base shape memory alloy in rotating disk atomization were investigated in accordance with disk materials and additional elements. Produced powders were classified into two types of spherical and flake shape. In the case of CuAlNiBTi and CuAlNiZr alloy, high yield rate and fine powder were obtained. This tendency was same when we used oxide coated disks. We concluded that this results were steno from the wetting characteristics change between molten metal and disk surface. Especially, due to the reactive properties of Ti and Zr with ceramic disk, the change of atomizing appearance and powder characteristics were noticeable.

  • PDF

급속응고된 Al81-(x+y)Si19NixCey 합금의 나노조직과 기계적 특성 (Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy)

  • 이태행;홍순직
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.406-414
    • /
    • 2003
  • In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF