• Title/Summary/Keyword: Al 합금소재

Search Result 139, Processing Time 0.02 seconds

The Properties of Au-Al Alloy Thin Films with a Thermal Evaporator for Purple Gold (퍼플골드를 위한 열증착법으로 제조된 Au-Al 합금 박막의 물성연구)

  • Kim, Jun-Hwan;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.466-472
    • /
    • 2008
  • Purple Gold is the alloy consisting of 78wt%Au-22wt%Al, and is expressed as a chemical formula, $AuAl_2$. Lately it is being used for the material of accessories or the decorative ornaments, being one of the colored golds having the peculiar purple color, like White Gold and Pink Gold. Purple Gold has the weak point in shaping through casting process due to the bad malleability and castability, being the intermetalic compound of Au and Al. Therefore, it is possible to produce the final product only by the cutting and the grinding process or to use it as a decorative coat with the thin film evaporation. This study implemented two kinds of thin film experiments. One is the case that heat treatment was made after Au and Al deposition evaporated separately with a weight ratio 78:22 on the 200nm$SiO_2$/Si substrate. The other is the case that the surface deposition was made through the vacuum evaporation, keeping the glass substrate temperature remain room temperature, using the bulk $AuAl_2$ as a source. The final film property was measured, focusing on the Purple Gold's color and thickness through the bare eye inspection, the microstructure analysis, the surface resistance analysis, the color difference analysis, and XRD analysis. Purple Gold was not formed, as the excessive surface agglomeration occurred, in case of being produced and treated thermally with 12.5nmAu/40nmAl/200nm$SiO_2$/Si structure. Our results suggest that of Purple Gold films, showing the same purple color as the bulk's, were successfully deposited with the direct thermal evaporation from the $AuAl_2$ bulk source.

Effect of Flux on Recovery of Aluminum During Molten Metal Treatment of Aluminum Can Scrap (알루미늄 캔 스크랩의 용탕처리 시 알루미늄 합금 회수에 미치는 플럭스의 영향)

  • Han, Chulwoong;Ahn, Byung-Doo;Kim, Dae-Guen;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.70-80
    • /
    • 2020
  • This study investigates the effect of flux type and mixing ratio on efficiency in aluminum can scrap recycling using induction furnace. The removal of surface coating layer of aluminum can scrap was possible through heat treatment at about 500 ℃ for about 30 min. The temperature for the melting process was set to be slightly above the melting temperature of the aluminium can scrap. The molten metal treatment was performed with different types of flux and mixing ratio. As a result, The optimum efficiency of Al recovery ratio was revealed when the process was performed with at least 3 wt.% of the flux (Salt and MgCl2 mixture of ratio 70:30) at 750 ℃. The mechanical property of the recovered Al alloy showed that the tensile strength is about 249 MPa and elongation is about 14 %. This result was found to be similar to the mechanical property of the virgin Al 5083 alloy.

Surface Observation of TiAlN Coatings by a Cathodic Arc : Effects of Cleaning Process Conditions (음극 아크를 이용 청정공정 조건에 따른 TiAlN 박막의 표면관찰)

  • Kim, Seong-Hwan;Yang, Ji-Hun;Song, Min-A;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.56-56
    • /
    • 2014
  • 티타늄-알루미늄-질화물(TiAlN)은 고능률 절삭 분야에 사용되는 공구의 수명 향상을 위한 표면처리 소재로 많이 이용되고 있다. 음극 아크로 코팅할 경우, 거대 입자가 박막 표면에 존재하여 박막의 품질을 저하시킨다. 본 연구에서는 공구의 수명을 향상시키는 TiAlN 박막을 TiAl 합금 타겟을 이용하여 형성하였으며, 거대입자의 생성을 줄일 수 기판 청정공정을 도출하였다. 그리고 따른 박막표면을 관찰하였다.

  • PDF

Characteristics of Dissimilar Materials Al alloy(A6005)-Mg alloy(AZ61) Under Friction Stir Welding for Railway Vehicle (철도차량 적용을 위한 Al alloy(A6005)-Mg alloy(AZ61) 이종소재 마찰교반용접 특성 연구)

  • Lee, Woo-Geun;Kim, Jung-Seok;Sun, Seung-Ju;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.706-713
    • /
    • 2016
  • In this study, the welding characteristics of friction stir welding were investigated in accordance with the tool plunge position and cooling to the base materials for the joining of dissimilar materials (A6005-AZ61). Other different welding conditions, such as the tool rotation speed and welding speed, were fixed to 500rpm-30mm/min, respectively, and welding was then carried out by placing the Mg alloy (AZ61) on the advancing side and Al alloy(A6005) on the retreating side. Welding was conducted under six different conditions. To investigate the welding characteristic, tensile test and microstructure observations using an optical microscope were carried out. As the tensile test result, the maximum strength appeared under the condition in which the tool is moved 1 mm to the Mg alloy direction and cooling to the base materials. Under the same welding conditions, the strength with cooling was approximately two times higher than that without cooling. The tool was located in each direction of 1.7 mm from the weld line. Therefore, in the excessive off-set of tool position, the welding integrity was in an extremely poor condition due to the lack of stirring. This study was confirmed by the A6005-AZ61 dissimilar friction stir welding the welding speed and the tool rotation speed. In addition, the temperature control and tool plunge position are important welding parameters.

Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Continuous Cooling After Solution Treatment in Mg-Al Alloys (Mg-Al 합금에서 용체화처리 후 연속 냉각으로 생성된 불연속 석출물 의 미세조직과 경도에 미치는 Al 함량의 영향)

  • Joong-Hwan, Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.295-302
    • /
    • 2022
  • The present study aims to investigate the effect of Al content on microstructure and hardness of discontinuous precipitates (DPs) formed by continuous cooling (CC) in Mg-8%Al and Mg-9.5%Al alloys. The DPs had a wide range of (α+β) interlamellar spacings, which may well be attributed to the different transformation temperatures during CC. The higher Al content gave rise to the higher level of interlamellar spacings of the DPs, and thicker and larger amount of β phase layer in the DPs. It is noticeable that the Mg-9.5%Al alloy exhibited higher hardness of the DPs than the Mg-8%Al alloy, but the ratio of increase in hardness of the DPs compared to that of the as-cast state was similar regardless of the Al content. The reason was discussed based on the differences in microstructures of the DPs for the Mg-8%Al and Mg-9.5%Al alloys.

Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Isothermal Aging in Mg-Al Alloys (Mg-Al 합금에서 등온 시효로 생성된 불연속 석출물의 미세조직과 경도에 미치는 Al 함량의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.287-293
    • /
    • 2021
  • This study was intended to investigate the influence of Al content on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-8.7%Al and Mg-10%Al alloys. In order to obtain large amount of DPs in the microstructure, the alloy specimens were solution-treated at 688K for 24 h followed by water quenching, and then aged at 418K for 48h. The Mg-Al alloy with higher Al content was characterized by higher volume fraction of DPs at the same aging condition, lower interlamellar spacing of the DPs, thinner β phase layer and higher β phase content in the DPs. This is closely related to the higher velocity of discontinuous precipitation process resulting from the higher Al supersaturation in the α-(Mg) matrix. The Mg-10%Al alloy showed higher hardness of the DPs and greater difference in hardness between as-cast state and DPs than the Mg-8.7%Al alloy.

Effect of Al Solution Strengthening on Damping Capacities of Mg-Al Alloy Solid Solutions (Al 고용 강화가 Mg-Al 합금 고용체의 진동감쇠능에 미치는 영향)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.221-227
    • /
    • 2024
  • The damping capacities in the strain-amplitude dependent and strain-amplitude independent regions were comparatively investigated for pure Mg and Mg-X%Al solid solutions (X : 1, 2 at%) to clarify the role of Al solute in the damping properties of Mg-Al binary solid solution. In order to rule out the effect of grain size on damping capacity, grain sizes of the samples were adjusted to an almost similar level by changing the heat-treatment or solution treatment times at 683 K (12 h, 24 h and 32 h for pure Mg, Mg-1%Al and Mg-2%Al alloys, respectively). The damping capacities of the heat-treated pure Mg and Mg-X%Al solid solutions exhibited a decreasing tendency with an increase in Al concentration both in the strain-amplitude dependent and strain-amplitude independent regions. The observed damping trends depending on strain-amplitude were analyzed and discussed in association with decreasing length between weak pinning points (Al solutes) in Granato-Lücke model.

Dissolution and Melting Phenomenon of Al2Cu according to Solution Treatment Temperature of Al12Si3Cu alloy (Al-Si-Cu합금의 용체화 처리 온도에 따른 Al2Cu 용해와 용융 현상)

  • Lee, Seunggwan;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, dissolution and melting phenomenon of the Al2Cu was studied for the high-strength Al-Si-Cu aluminum alloy in automobile component. The Solution heat treatment was performed at 480℃ and 510℃ for 4hours. Microstructure analysis of the specimen was performed using the optical micrograph and scanning electron microscope for qualitative and quantitative analysis of various phases, the chemical composition of secondary phases was achieved by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). As a result of the electron probe micro analysis, a plate like Al2Cu phase was observed, and eutectic Si phase was observed of a coarsen plate shape. At a temperature of 510, necking phenomenon occurs in a specific part of plate like Al2Cu, and it is segmented and dissolved in the Al matrix. When the temperature of the alloy exceeds the melting point of Al2Cu, incipient melting occurs at the grain boundary of undissolved Cu particles

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

Electrochemical Study of Electrode Material of Ni-MH Battery for HEV and PEMFC Fuel Cell (HEV 및 PEMFC 연료전지용 니켈수소 전지의 전극재료에 대한 전기화학적 평가)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : misch metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for the anode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the cyclic voltammetry and the galvanostatic charge/discharge experiments were performed. A single particle of the alloy showed the discharge capacity of 280[mAh/g], the value being 90[%] of the theoretical capacity. Data were compared with that of the composite film consisting of the alloy particles and a polymer binder, which is more practical form for Ni-MH batteries. Additionally, pulverization of the alloy particles are directly observed. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.