• Title/Summary/Keyword: Al/alumina

Search Result 824, Processing Time 0.034 seconds

Antimicrobial Effect of Metal tons Substitution to HAp, Zeolite (HAp, Zeolite에 여러 금속 Ion 치환시 나타나는 항균효과)

  • Kim, Yun-Jong;Kim, Taek-Nam;Kim, Sang-Bae;Jo, Seong-Baek;Jo, Geon-Jun;Lee, Tae-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.120-125
    • /
    • 2001
  • Generally, hydroxyapatite(HAp), zeolite, carbon molecular sieve , activated carbon and alumina are used as heavy metal ions adsorption materials. Among those adsorption materials, HAp which has good positive ion-exchange ability with metal ion, and zeolite are utilized in wastewater treatment. Most of water pollutions are caused by hazardous heavy metals ions as well as bacteria in waste water. In this study, a adsorption materials (HAP and zeolite) are ion-exchanged with a well known antimicrobial metal ions, such as $Ag^+,\;Cu^{2+},\;and\;Zn^{2+}$, in order to give a adsorption of heavy metal ions and a killing effects of bacteria. The antimicrobial effects of adsorption materials are observed using by E. Coli. The results show that there is a complete antimicrobial effect in the adsorption materials with $Ag^+$ at the concentration of $1{\times}10^{-4}$cell/$m\ell$ of E. Coli until 24 hours. However, there is not good antimicrobial effects in the adsorption materials with $Cu^{2+},\;and\;Zn^{2+}$ substitution. Feng et. al. showed the denaturation effects of silver ions which induces the condensed DNA molecules and losing their replication abilities.

  • PDF

선캠브리아 홍제사 화강암의 진화과정(한국 북동부지역의 원생대의 화성활동과 변성작용)

  • 김정민;조문섭
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.76-93
    • /
    • 1994
  • The Precambrian Hongjesa granite is lithologically zoned from biotite granite in central part to biotite-muscovite granite towards the margin. The X_{Fe}$ (=Fe/(Fe+Mg)) value and the aluminum saturation index of biotite systematically vary as a function of mineral assemblage, and are positively related with those of bulk rock. This relationship as well as the lithological zoning are attributed to the fractional crystallization of the Hongjesa granitic magma. The trace element data corroborate that biotite-muscovite granite is more fractionated than biotite granite. The evolution of the Hongjesa granite is elucidated by using the AFM liquidus topology, where A=$Al_2O_3-CaO-Na_2O-K_2O$; F=FeO+MnO; and M=MgO. At an early magmatic stage where biotite is the only ferromagnesian mineral to crystallize, the X_{Fe}$ value and the alumina content of granitic magma continuously increase.. Muscovite subsequently crystallizes with biotite along the biotitemuscovite cotectic curve where biotite-muscovite granite forms. Local enrichments in Mn and B further crystallize garnet and tourmaline, respectively. The unique zonal pattern characterized by the occurrence of the evolved biotite-muscovite granite at the margin may be accounted for by the passive stoping during the emplacement of the Hongjesa granite. This emplacement may have occurred in continental collision environment, according to the tectonic discrimination diagram using major element chemistry.

  • PDF

Physicochemical properties of the materials used for the production of celadon maebyeong inlaid with cloud-and-crane designs and changes in their morphological properties by production stage (청자상감운학문매병 제작 재료의 물리화학적 특성 및 제작 단계별 형상학적 특성 변화)

  • Kim, Jihye;Ha, Jihyang;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.63-84
    • /
    • 2021
  • In order to investigate the diverse physicochemical changes that occurred in traditional Korean pottery during its production, including before and after firing, this study produced six replicas of a celadon maebyeong inlaid with cloud-and-crane designs, respectively corresponding to the process of shaping, carving, inlaying designs, first firing, glazing and second firing, respectively. It then conducted a scientific study of these six replicas and analyzed their images through high-resolution three-dimensional transmission imaging. The materials used for the replicas show different mineral phases and even colors depending on the components of each material. For example, black inlay with a high content of iron oxide (Fe2O3) shows dark colors and white inlay with a high alumina (Al2O3) content appears white. Physicochemical properties such as chromaticity and magnetic susceptibility and major components of the replicas were confirmed by the differences in the density in the computed tomography (CT) images. The characteristics of fired products such as fine structure, absorption ratio, apparent porosity, and other characteristics of the major mineral components were identified by the presence of pores and the formation of cracks inside the replicas in the image analysis.

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

XRF Analysis and Polarizing Microscopic Study of the Lava Cave Formation, Korea, Japan and Russia (한국, 일본, 러시아 용암동굴 형성층의 형광X선 분석과 편광현미경적 연구)

  • Sawa, Isao;Furuyama, Katsuhiko;Ohashi, Tsuyoshi;Kim, Chang-Sik;Kashima, Naruhiko
    • Journal of the Speleological Society of Korea
    • /
    • no.74
    • /
    • pp.23-31
    • /
    • 2006
  • (1) Kaeusetgul Cave in Kimnyong-Ri, Jeju-Do, Korea. Kaeuset-gul Cave (KC) is situated in NNE area of the Manjang-gul cave (125m a.s.l.). Kaeuset-gul Cave lies at $126^{\circ}45'22"$ E in longitude and $33^{\circ}33'09"$ N in latitude. The coast belong Kimnyeong-Ri, Kujwa-eup, Jeju-Do. Altitude of the cave-entrance is 10m and length of the cave is 90m. Lava hand-specimens of KC are studied by X-ray fluorescence analysis (XRF). Average major chemical components of specimens from KC is as follows (wt.%); $SiO_2=47.03$, $TiO_2=3.16$, $Al_2O_3=18.41$, FeO*=13.53, MnO=0.14, MgO=5.05, CaO=8.66, $Na_2O=2.81$, $K_2O=0.67$, $P_2O_5=0.55$ in KC. Polarizing microscopic studyindicates that these specimens are described of alkali-basalt. (2) Tachibori Fuketsu (Cave) in Shizuoka Prefecture, Fuji Volcano, Japan Tachibori Fuketsu lies attoward the south in skirt of the Fuji volcano, $138^{\circ}42'04"$ east longitude and $35^{\circ}18'00"$ north latitude. The location of cave entrance is 2745, Awakura, Fujinomiya-shi, Shizuoka Prefecture. The above sea level and length of Tachibori Fuketsu are 1,170m and 82m. Average major chemical components of specimens from cave areas follows (Total 100 wt.%) ; ($SiO_2$=50.52, $TiO_2$=1.69, $Al_2O_3$=15.47, FeO*=13.13, MnO=0.20, MgO=5.97, CaO=9.17, $Na_2O$=2.52, $K_2O$=0.94 and $P_2O_5=0.40).$ Polarizing microscopic study indicates that these specimens may belong to tholeiite-basalt series. According to polarizing microscopic study, Au (Augite), P1 (Plagioclase), and O1 (Olivine) are contained as phenocryst minerals. (3) Gorely Cave in Kamchatka Peninsula, Russia Gorely caldera is located at the southeastern part of Kamchatka Peninsula, about 75km southwest of Petropavlovsk-Kamchatskiy.. Gorely lava caves are situated in NHE area of Mt. Gorely volcano (1829m a.s.1.). One of lava cave (Go-9612=K-1) lies at $158^{\circ}00'22"$ east longitude and $52^{\circ}36'18"$ north latitude. The elevation of cave entrance is about 990m a.s.1. and the main cave extends in the NNW direction for about 50m by 15m wide and 5m in depth. The cave of K-3is near the K-1 cave. "@Lava hand-specimens K-1 and K-3 caves are studied by X-ray fluorescence analysis and polarizing microscopic observation. Average major chemical components of specimens from these caves are as follows (wt.%) ;($SiO_2$=55.12, $TiO_2$=1.25, $Al_2O_3$=16.07, T-FeO* =9.41, MnO=0.16, MgO=5.01, CaO=7.21, $Na_2O$=3.39, $K_2O$=1.92, $P_2O_5$=0.45) and these values indicate that the Gorely basaltic andesite belong to high alumina basalt. Polarizing microscopic study indicates that these specimens are described of Augite andesite.

Fabrication and characterization of boron free E-glass fiber compositions (붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Yo-Sep;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • E-glass fiber is the most widely used glass fiber for reinforced composite materials of aircrafts, automobiles and leisure equipments. But recently researches are being progressed to reduce boric oxide from 8 % to 0 (zero), as is called 'Boron free E-glass', because of increasing material cost, environmental problem, and improving chemical resistance and mechanical properties of E-glass fiber. In this study, we fabricated the bulk glass and fiber glass of 'Boron free E-glass (BF) compositions', and characterized thermal properties and optical properties. 'Boron free E-glass (BF)' was obtained by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different $Al_2O_3$ compositions 5~10 %. We obtained transparent clear glass with high visible light transmittance value of 81~86 %, and low thermal expansion coefficient of $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$ and softening point of $907{\sim}928^{\circ}C$. For the chemical resistance test of 'BF' fiber samples, we identified that the higher alumina contents gives the better corrosion resistance of glass fiber.

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Geochemical Study on Geological Groups of Stream Sediments in the Gwangju Area (광주지역 하상퇴적물에 대한 지질집단별 지구화학적 연구)

  • Kim, Jong-Kyun;Park, Yeung-Seog
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.481-492
    • /
    • 2005
  • The purpose of this study is to determine geochemical characteristics for stream sediments in the Gwangju area. We collect the stream sediments samples by wet sieving along the primary channels and dry these samples slowly in the laboratory and grind to under 200mesh using an alumina mortar fur chemical analysis. Major elements, trace and rare earth elements are determined by XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on geological groups of stream sediments, we separate geologic groups which are derived from Precambrian granite gneiss area, Jurassic granite area and Cretaceous Hwasun andesite area. Contents range of major elements for stream sediments in the Gwangju area are $SiO_2\;51.89\~70.63\;wt.\%,\;Al_2O-3\;12.91\~21.95\;wt.\%,\;Fe_2O_3\;3.22\~9.89\;wt.\%,\;K_2O\;1.85\~4.49\;wt.\%,\;MgO\;0.68\~2.90\;wt.\%,\;Na_2O\;0.48\~2.34\;wt.\%,\;CaO\;0.42\~6.72\;wt.\%,\;TiO_2\;0.53\~l.32\;wt.\%,\;P_2O_5\;0.06\~0.51\;wt.\%\;and\;MnO\;0.05\~0.69\;wt.\%.$ According to the AMF diagram for stream sediments and rocks, the stream sediments are plotted on boundary of tholeiitic series and calk alkaline series, which shows that contents of $Fe_2O_3$ are higher in stream sediments than rocks. According to variation diagram of $SiO_2$ versus $(K_2O+Na_2O),$ stream sediments are plotted on subalkaline series. Contents range of trace and rare earth elements for stream sediments in the Gwangiu area are Ba$590\~2170$ppm, Be1\~2.4$ppm, Cu$13\~79$ppm, Nb$20\~34$ppm, Ni$10\~50$ppm, Pb$17\~30$ppm, Sr$70\~1025$ ppm, V$42\~135$ppm, Zr$45\~171$ppm, Li$19\~77$ppm, Co$4.3\~19.3$ppm, Cr$28\~131$ppm, Cs$3.1\~17.6$ppm, Hf$5\~27.6$ppm, Rb$388\~202$ppm, Sb$0.2\~l.2$ ppm, Sc$6.4\~17$ppm, Zn$47\~389$ppm, Pa$8.8\~68.8$ppm, Ce$62\~272$ppm, Eu$1\~2.7$ppm and Yb$0.9\~6$ppm.

A Study on the Replacement of a Light Burnt Dolomite with a Waste MgO-C Refractory Material for a Steel-Making Flux in Electric Arc Furnace (폐 MgO-C계 내화재의 전기로(EAF) 제강 Flux용 경소돌로마이트 대체 사용 연구)

  • Hyun-Jong Kim;Jong-Deok Lim;Hang-Goo Kim;Jei-Pil Wang
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.44-51
    • /
    • 2022
  • In the steelmaking process using an electric arc furnace (EAF), light-burnt dolomite, which is a flux containing MgO, is used to protect refractory materials and improve desulfurization ability. Furthermore, a recarburizing agent is added to reduce energy consumption via slag foaming and to induce the deoxidation effect. Herein, a waste MgO-C based refractory material was used to achieve the aforementioned effects economically. The waste MgO-C refractory materials contain a significant amount of MgO and graphite components; however, most of these materials are currently discarded instead of being recycled. The mass recycling of waste MgO-C refractory materials would be achievable if their applicability as a flux for steelmaking is proven. Therefore, experiments were performed using a target composition range similar to the commercial EAF slag composition. A pre-melted base slag was prepared by mixing SiO2, Al2O3, and FeO in an alumina crucible and heating at 1450℃ for 1 h or more. Subsequently, a mixed flux #2 (a mixture of light-burnt dolomite, waste MgO-C based refractory material, and limestone) was added to the prepared pre-melted base slag and a melting reaction test was performed. Injecting the pre-melted base slag with the flux facilitates the formation of the target EAF slag. These results were compared with that of mixed flux #1 (a mixture of light-burnt dolomite and limestone), which is a conventional steelmaking flux, and the possibility of replacement was evaluated. To obtain a reliable evaluation, characterization techniques like X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) spectrometry were used, and slag foam height, slag basicity, and Fe recovery were calculated.