• Title/Summary/Keyword: Al/SiC composite

Search Result 316, Processing Time 0.031 seconds

Lubricated Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 윤활마모특성)

  • Fu, Hui-hui;Bae, Sung-in;Ham, Kyung-chun;Song, Jung-il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.135-138
    • /
    • 2002
  • The purpose of this study is to investigate the lubricated wear properties of Saffil/Al, Saffil/$Al_2O_3/Al$ and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction & wear tester with long sliding distance. The wear properties of the three composites were evaluated in many respects. The effects of Saffil, $Al_2O_3$ particles and SiC particles on the wear behavior of the composites under lubricated conditions were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Comparing with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under intermediate load, Saffil/Al showed best wear resistance among them, and its COF value is the smallest. The dominant wear mechanism of the composites was microploughing, but microcracking also occurred for them to different extent.

  • PDF

Characterization of the Ceramic Reinforced AC4C Matrix Composites Processed by Squeeze Casting (용탕단조법으로 제조된 AC4C 합금기 세라믹강화 복합재료의 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2005
  • The microstructure and mechanical property of the ceramic reinforced AC4C matrix composites processed by squeeze casting were investigated. In this study Kaowool and Saffil fiber which are ceramic reinforcements are used as preform materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Kaowool and Saffil/AC4C composites, 7.5 MPa squeezing pressure and minimum 7.0% binder amount are needed to produce sound composite materials. The tensile strength of Kaowool/ AC4C composite is lower than the matrix metal and this can be explained by the melt unfilling due to formed cluster of Kaowool reinforcements. But the mechanical properties of hardness, wear resistance and thermal expansion are better than the matrix materials due to the strengthening effect of ceramic reinforcements.

Fabrication of AC4A/$SiC_w$composite by squeeze casting(II) (용탕단조법에 의한 AC4A/$SiC_w$복합재교 제조에 관한 연구(ll)-가압력 및 시효특성-)

  • Mun, Gyeong-Cheol;Lee, Chun-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.606-613
    • /
    • 1993
  • This was studied about aging characteristic of AC4A/$SiC_{w}$ 10-30v/o reinforced composite. Aging hardenability was decreased $SiC_{w}$ 30% > 10% > 20%. Aging hardening of T6 treatmented composite was higher absolute value than AC4A I/M material. And this results indicated initial hardening phenomenon according to increase $SiC_{w}$ volume fraction. Reinforced effect by pressure was the same effect as before aging treatment and the best condition pressure at 75MPa. Similar to reinforced effect according to $SiC_{w}$ volume fraction was 30 % > 10 % > 20 %. In case of pressure is low, whisker is not break the same time press with base metal after wetting. After it is wetting with base metal, a part transformed or wetting part break and whisker maintain original shape or a part transformed on the otherhand, in case of pressure is high, whisker is break in same time it was not against pressure and whisker's shape is near a polygon or spherical shape.

  • PDF

Tribological Properties of Hot Pressed $SiC/Si_3N_4$ Composites (가압소결 $SiC/Si_3N_4$ 복합체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1102-1107
    • /
    • 1999
  • SiC-Si3N4 composites were prepared by mixing $\alpha$-Si3N4 powder to $\alpha$-SiC powder in the range of 10 to 30 vol% with 10vol% interval. 6wg% Al2O3 and 6wt% Y2O3 were respectively added as sintering aids. Hot pressing was performed at 1,80$0^{\circ}C$ for 1 hour with 25 MPa pressure. In the case of adding 20vol% of $\alpha$-Si3N4 powder the relative density to theoretical value and the flexural strength were 99.1% and 34,420 MPa respectively and the worn amount was 2.09$\times$10-3 mm2 which were the highest values in the all range of he composition. Although the composite containig 10 vol% of $\alpha$-Si3N4 powder showed the highest fracture toughness(KIC) of 4.65MN/m3/2 the reduction of the wear resistance in this composite is likely to be affected by the homogeneity and the uniformity of the grain coalescence and growth during the sintering process.

  • PDF

Casting Technology of an Aluminum Alloy Composite Brake Disc (알루미늄 복합재 제동디스크 주조 기술 개발)

  • Goo, Byeong-Choon;Kim, Myung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.971-974
    • /
    • 2011
  • Aluminum matrix composites reinforced with SiC particles(AMC) are one of the candidate materials for the weight reduction of rolling stock brake discs. It is known that weight reduction of about 40% is possible when they replace conventional cast iron brake discs. But casting is not easy because of bad wettability of SiC with Al alloy. We developed two AMC brake discs with SiC volume fraction of 20% by a new casting method. It was found the developed method produced brake discs of good quality.

  • PDF

A Study on Sintering and mechanical Properties of Sinter/HIPed SiC Whisker/$Al_2O_3$ Composite (Sinter/HIP 공정으로 제조한 SiC whisker/$Al_2O_3$ 복합재료의 소결 및 기계적 물성에 관한 연구)

  • Lee, Chae-Hyun;Kim, Jong-Ock;Kim, Chong-Hee
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 1995
  • Effects of sintering additives and sintering temperatures on the sintering behavior and mechanical properties of SiC whisker reinforced alumina composites have been investigated in this study. Dense (>95% TD) composites were obtained by using 2 wt% $Y_2O_3$ as liquid phase sintering additive. But only porous composite could be obtained when the sintering additives were MgO and $TiO_2$, which were known as the sintering additives for solid state sintering of alumina. Bending strength and fracture toughness were enhanced by reinforcement of SiC whisker. It is belived from the microstructure investigation that the enhanced by strength and toughness could be attribute to the reinforcing and grain growth inhibition effects of SiC whisker. After HIP treatment, fully dense composites were obtained and further enhanced mechanical properties achieved.

  • PDF

High Temperature Deformation Behaviour of Particulate Reinforced Aluminium Composites (입자분산강화 알루미늄 복합재료의 고온거동에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.765-774
    • /
    • 1995
  • The hot deformation behaviour of particulate reinforced aluminium 6061 Al composite were investigated by hot compression tests in the temperature range from 623K to 823K with strain rate of 10$^{-3}$ ~5.0 S$^{-1}$ . The effect of reinforced particulate volume fraction, mean diameter on the high temperature flow stress has also been studied. Experimental results showed that the increase in the volume fraction of reinforcement contributed to the rising of yield stress, but the stress above the yield point appeared to be steady state at all volume fractions. The apparent activation energy for deformation was 290KJ/mo1 for unreinforced 6061 Al, 327KJ/mo1 for 6061 Al-20vo1.% SiC composite and 531KJ/mo1 for 6061 Al-20vo1.%A1$_2$O$_3$composite. It appeared that $Al_2$O$_3$reinforced composites was more difficult to hot deform.

  • PDF

Microwave Induced Reduction/Oxidation Reaction by SHS Technique (마이크로파를 이용한 SHS 방법에 의한 분말의 산화-환원반응)

  • 김석범
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.44-47
    • /
    • 1998
  • A reduction/oxidation reaction between A1 metal powder and SiO2 powder was performed by Self-propagating High-temperature Synthesis (SHS) reaction induced by microwave energy to produce a composite of Al2O3 and Si powders by using a 2.45 GHz kitchen model microwave oven. A Microwave Hybrid Heating(MHH) method was applied by using SiC powders as a suscepting material to raise the temperature of the disk samples and the heat increase rate of over 100℃/min were obtained before the reaction. The reaction started around 850℃ and the heat increase rate jumped to over 200℃/min after the reaction took place.

  • PDF

Dip Coating of Amorphous Materials on Metal Surface (금속표면에 비정질의 피복)

  • Park, Byung-Ok;Yoon, Byung-Ha
    • Journal of Surface Science and Engineering
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 1987
  • The properties of $Cr_2O_3-Al_2O_3-SiO_2$ composite oxide coatings on steel surface were investigated. The results obtained were as follows: The microhardness of oxide coating layer increased with increasing heat-treatment temperature and $Cr_2O_3$ content in coating layer. The hardness showed the highest value (850Hv) treated at 700$^{\circ}C$ for $SiO_2:Al_2O_3:Cr_2O_3$=1:1:4. Increasing heat-treatment temperature, corrosion current density became lower and coating layer became denser. The corrosion current density showed the lowest value $(6.5{\times}10^{-5}\;Acm^2)$ treated at 750$^{\circ}C\;for\;SiO_2:Al_2O_3:Cr_2O_3$=1:1:3. These results were explained by protective layer which was formed during heat-treatment. The bonding between matrix and coating layer is expected to be made mechanically and chemically by the inter diffusion of Ni and Fe. The composite oxide coating was formed by softening of the binder with increasing heat-treatment temperature. The strengthening of coating layer is to be resulted from the dispersion of major oxide particles.

  • PDF

Characteristics in Microstructure of Particle Reinforced Al Matrix Composites Fabricated by Spray-Cast Forming Process (분사주조한 입자강화 알루미늄 복합재료의 미세조직 특성)

  • Park, Chong-Sung;Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.530-540
    • /
    • 1994
  • Aluminium-silicon alloy(JIS AC8A) matrix composites reinforced with SiC particles were fabricated by spray-cast forming process, and the microstructure of powders and preforms produced were studied by using an optical and scanning electron microscopy. SiC particles were co-sprayed by mixed phase injection method during the spray casting process. Most of the composite powders formed by this mixed phase injection method exhibit morphology of particle-embedded type, and some exhibits the morphology of particle attached type due to additional attachment of the SiC particles on the surface of the powders in flight. The preforms deposited were resulted in dispersed type microstructure. The pre-solidified droplets and the deposited preform of SiC-reinforced aluminium alloy exhibit finer equiaxed grain size than that of unreinforced aluminium alloy. Eutectic silicons of granular type are crystallized at the corner of the aluminum grains in the preforms deposited, and some SiC particles seem to act as nucleation sites for primary/eutectic silicon during solidification. Such primary/eutectic silicons seem to retard grain growth during the continued spray casting process. It is envisaged from the microstructural observations for the deposited preform that the resultant distribution of SiC injected particles in the Al-Si microsturcture is affected by the amount of liquid phase in the top part of the preform and by the solidification rate of the preform deposited.

  • PDF