• 제목/요약/키워드: Al) thin film

검색결과 1,301건 처리시간 0.028초

Al 도핑된 ZnO 박막에서 방출되는 보라색 발광 스펙트럼 (Violet Photoluminescence Emitted from Al-doped ZnO Thin Films)

  • 황동현;손영국;조신호
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.318-324
    • /
    • 2007
  • We report on a strong violet luminescence emitted from the ZnO:Al films grown on glass substrate by radio-frequency magnetron sputtering. The growth of high-quality thin films and their optical properties are controlled by adjusting the mixture ratio of Ar and $O_2$, which is used as the sputtering gas. The crystallinity of the films is improved as the oxygen flow ratio is decreased, as evidenced in both x-ray diffractometer and atomic force microscope measurements. As for the violet luminescence measured by photoluminescence (PL) spectroscopy, the peak energy and intensity of the PL signal are decreased with increasing the oxygen flow ratio. The peak energy of the violet PL spectrum for the thin film with an oxygen flow ratio of 50 % is almost constant, regardless of the increase of laser Power and temperature. These results indicate that the violet PL signal is probably due to defects related to interstitial Zn atoms.

산화아연 나노구조 박막의 일산화탄소 가스 감지 특성 (CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films)

  • 웬래훙;김효진;김도진
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition)

  • 안하림;백성호;박일규;안효진
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

High Performance Electroluminescent Display Device with AION-TiON Insulator

  • Lim, Jung-Wook;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.932-934
    • /
    • 2003
  • For the insulator of inorganic thin film electroluminescent (TFEL), devices AlON combined with TiON was used and it exhibits higher luminance than AlON as well as $Al_{2}O_{3}$ insulator. Furthermore, using AlON with TiON film show better stability and higher luminance than that with $TiO_{2}$ grown by conventional atomic layer deposition (ALD) for the application of the insulator of ZnS:Mn TFEL device.

  • PDF

Sol-Gel 법을 이용한 칼슘-알루미네이트계 전자화물 박막의 제조와 특성 (Fabrication and properties of Calcium-aluminate electride thin films using by sol-gel process)

  • 김경훈;박주석;채재홍;서원선;소성민;김태관;김형순;이병하
    • 한국결정성장학회지
    • /
    • 제20권6호
    • /
    • pp.262-266
    • /
    • 2010
  • Sol-gel법을 적용하여 $12CaO{\cdot}7Al_2O_3$(C12A7) 전자화물 박막을 제조하기 위해 CaO-$Al_2O_3$ sol을 제조하여 dip 코팅법을 적용하여 quartz 기판에 박막을 형성하였으며 열처리를 통해 C12A7의 박막을 제조하였다. C12A7 상의 형성 $800^{\circ}C$에서 시작되었고 $1,200^{\circ}C$ 온도에서 1시간 열처리를 통해 치밀화된 박막을 제조할 수 있었다. 제조된 C12A7 박막은 부도체였지만 수소 환원 분위기 열처리를 통해 전기전도도를 나타내기 시작했으며 $1,200^{\circ}C$ 48시간 열처리 시 120 S/cm의 전기전도도를 나타내었다.

실리콘 기판 위에 플라즈마 분자선 에피택시를 이용하여 성장된 질화알루미늄 박막의 특성분석 (Characterization of AlN thin films grown by plasma assisted molecular beam epitaxy on Si substrates)

  • 홍성의;한기평;백문철;조경익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.111-114
    • /
    • 2000
  • Growth characteristics and microstructure of AlN thin films grown by plasma assisted molecular beam epitaxy on Si substrates have been investigated. Growing temperature and substrate orientation were chosen as major variables of the experiment. Reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy/diffraction (TEM/TED) techniques were employed to characterize the microstructure of the films. On Si(100) substrates, AlN thin films were grown along the hexagonal c-axis preferred orientation at temperature range 850-90$0^{\circ}C$. However on Si(111), the AlN films were epitaxially grown with directional coherency in AlN(0001)/Si(111), AlN(1100)/Si(110), and AlN(1120)/Si(112) at 85$0^{\circ}C$ and the epitaxial coherencry seemed to be slightly distorted with increasing temperature. The microstructure of AlN thin films on Si(111) substrates showed that the films include a lot of crystal defects and there exist micro-gaps among the columns.

  • PDF

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작 (Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems)

  • 강유리;김용국;김수원;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

낮은 저항온도계수를 갖는 박막 저항체 제작 및 신뢰성 특성 평가 (Fabrication and Reliability Properties of Thin film Resistors with Low Temperature Coefficient of Resistance)

  • 이붕주
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.352-356
    • /
    • 2007
  • The Ni/Cr/Al/Cu (51/41/4/4 wt%) thin films were deposited by using DC magnetron sputtering method for the application of the resistors having low TCR (temperature coefficients of resistance) and high resistivity from the former printed-results[3]. The TCR values measured on the as-deposited thin film resistors were less than ${\pm}10\;ppm/^{\circ}C$ and $-6{\sim}+1\;ppm/^{\circ}C$ after annealing and packaging process. The TCR values were $-3{\sim}1\;ppm/^{\circ}C$ (ratio of variation : about 0.02 %) and $-30{\sim}20\;ppm/^{\circ}C$ (ratio of variation : about $0.5{\sim}1\;%$) for the thermal cycling and PCT (pressure cooker test), respectively. It was confirmed that the reliability properties of the thin film resistor were good for electronic components.

Texture of Al/Ti thin films deposited on low dielectric polymer substrates

  • Yoo, Se-Yoon;Kim, Young-Ho
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.103-108
    • /
    • 2000
  • The texture of Al/Ti thin films deposited on low-dielectric polymer substrates has been investigated. Fifty-nm-thick Ti films and 500-nm-thick Al-1%Si-0.5%Cu (wt%) films were deposited sequentially onto low-k polymers and SiO$_2$ by using a DC magnetron sputtering system. The texture of Al thin film was determined using X-ray diffraction (XRD) theta-2theta ($\theta$-2$\theta$) and rocking curve and the microstructure of Al/Ti films on low-k polymer and SiO$_2$ substrates was characterized by Transmission electron microscopy (TEM). hall thin films deposited on SiO$_2$ had stronger texture than those deposited on low-k polymer. The texture of Al thin films strongly depended on that of Ti films. Cross-sectional TEM resealed that Brains of Ti films on SiO$_2$ substrates had grown perpendicular to the substrate, while the grains of Ti films on SiLK substrates were farmed randomly. The lower degree of 111 texture of Al thin films on low-k polymer was due to Ti underlayer.

  • PDF