• Title/Summary/Keyword: Al) thin film

Search Result 1,301, Processing Time 0.034 seconds

Deposition process of Multi-layered Al-%Cu/Tungsten Nitride Thin Film (Magnetron sputtering 법으로 제조된 Al-1%Cu/Tungsten Nitride 다층 박막)

  • Lee, Gi-Seon;Kim, Jang-Hyeon;Seo, Su-Jeong;Kim, Nam-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.624-628
    • /
    • 2000
  • As a power durable-electrode in SAW filter, Al-1%Cu/tungsten nitride multi-layer thin film was fabricated by magnetron sputtering process. Tungsten nitride films had the amorphous phase at the nitrogen ratio, R, ranging from 10~40%. The amorphization could be controlled by nitrogen ratio, R= $N_2$/($N_2$+Ar) as a sputtering process parameter. Residual stress in tungsten nitride abruptly decreased with the formation of amorphous phase. Al-1%Cu thin film was deposited on the amorphous tungsten nitride. After the multi-layed thin film was annealed for 4 hours at 453K, the resistivity decreased as $3.6{\mu}{\Omega}-cm$, which was due to grain growth reduced crystal defects.

  • PDF

Transparent Conductive Oxide(TCO) thin film(AZO) prepared for display application (디스플레이용 투명전도막(AZO)의 제작)

  • Kim, H.W.;Keum, M.J.;Son, I.H.;Sin, S.K.;Ka, C.H.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.165-168
    • /
    • 2004
  • In this study, AZO(ZnO:Al) thin film were prepared by FTS(Facing Target Sputtering) system. The electrical, optical and crystallographic properties of AZO thin film with $O_2$ gas flow ratio have been investigated. The thickness, transmittance, crystal structure and resistivity of AZO thin film were measured by a-step, UV-VIS spectrometer, XRD and four-point probe, respectively. As a result AZO thin film deposited with the transmittance over 80% and the resistivity about $10^{-1}\Omega-cm$.

  • PDF

A study on characteristics of AZO thin film by variation of thickness (막두께 변화에 따른 AZO 박막의 특성 연구)

  • Kim, H.W.;Keum, M.J.;Lee, W.J.;Jang, K.U.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.586-589
    • /
    • 2004
  • In this study, AZO(ZnO:Al) thin film were prepared by FTS(Facing Target Sputtering) system. The electrical, optical properties and crystalline of AZO thin film with thickness have been investigated. The thickness, transmittance, crystalline and electrical properties of AZO thin film were measured by a-step, UV-VIS spectrometer, hall effect measurement system, XRD and four-point probe, respectively. As a result, AZO thin film deposited with the transmittance over 80% and the resistivity about $10^{-4}\;\Omega-cm$.

  • PDF

Characterization of AlN Thin Films Grown by Pulsed Laser Deposition on Sapphire Substrate (사파이어 기판에 펄스 레이저 증착법으로 성장된 AlN 박막의 특성)

  • Jeong, Eun-Hee;Chung, Jun-Ki;Jung, Rae-Young;Kim, Sung-Jin;Park, Sang-Yeup
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.551-556
    • /
    • 2013
  • AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition and the films were characterized by changing the deposition conditions. In particular, we investigated the optimal conditions for the application of a heat sinking plane AlN thin film. Epitaxial AlN films were deposited on sapphire ($c-Al_2O_3$) single crystals by pulsed laser deposition (PLD) with an AlN target. AlN films were deposited at a fixed pressure of $2{\times}10^{-5}$ Torr, while the substrate temperature was varied from 500 to $700^{\circ}C$. According to the experimental results of the growth temperature of the thin film, AlN thin films were confirmed with a highly c-axis orientation, maximum grain size, and high thermal conductivity at $650^{\circ}C$. The thermal conductivity of the AlN thin film was found to increase compared to bulk AlN near the band gap value of 6.2 eV.

EFFECTS OF SPUTTERED NON-PRECIOUS METALLIC THIN FILMS ON THE CHEMICAL BONING BETWEEN DENTAL ALLOY AND PORCELAIN (비귀금속 박막이 치과용합금과 치과용도재와의 화학적결합에 미치는 영향)

  • Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.481-492
    • /
    • 1992
  • Author measured the bonding strength between Dental Porcelain and Nonprecious Dental Alloy and analyzed diffusion Phenomena at the interfaceby by Auger electron spectroscopy and also Electron spectroscopy for Chemical Analysis. The each specimen was sputtered with Al, Cr, In and Sn. 1. Ni whic is the main element of the matris of dental nonprecious alloy diffuse more than the other element and the Ni diffusion rate of each specimen was well coordinated with the bonding strength of each. 2. The Sn thin film suppress the diffusion rate of Ni of matrix into the Dental Porcelain than the In or Cr thin films. 3. The Al thin film suppress the diffusion rate of Ni than the Sn thin film. 4. The main coponent of dental porcelain : Al, Si, Mo diffused into the matrix of alloy. It means that the each element of dental alloy and dental porelain diffused into the each other part.

  • PDF

Development of textured ZnO:Al films for silicon thin film solar cells (실리콘 박막 태양전지용 텍스처링 ZnO:Al 박막 개발)

  • Cho, Jun-Sik;Kim, Young-Jin;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.349-349
    • /
    • 2009
  • High quality ZnO:Al films were prepared on glass substrates by in-line RF magnetron sputtering and their surface morphologies were modified by wet-etching process in dilute acid solution to improve optical properties for application to silicon thin film solar cells as front electrode. The as-deposited films show a strong preferred orientation in [001] direction under our experimental conditions. A low resistivity below $5{\times}10^{-4}{\Omega}{\cdot}cm$ and high optical transmittance above 80% in a visible range are achieved in the films deposited at optimized conditions. After wet-etching, the surface morphologies of the films are changed dramatically depending on the deposition conditions, especially working pressure. The optical properties such as total/diffuse transmittance, haze and angular resolved distribution of light are varied significantly with the surface morphology feature, whereas the electrical properties are seldom changed. The cell performances of silicon thin film solar cells fabricated on the textured films are also evaluated in detail with comparison of commercial $SnO_2$:F films.

  • PDF

Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer (Solution-Processed Al2O3 확산층을 이용한 Sputtering IZO Thin Film Transistor의 안정성 향상)

  • Hwang, Namgyung;Lim, Yooseong;Lee, Jeong Seok;Lee, Sehyeong;Yi, Moonsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.273-277
    • /
    • 2018
  • This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

Nano-scale Patterning of Al thin film on 4H-SiC using AFM tip Scratching (AFM Scratching 기법을 이용한 4H-SiC기판상의 Al 박막 초미세 패턴 형성 연구)

  • Ahn, Jung-Joon;Kim, Jae-Hyung;Park, Yea-Seul;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.351-351
    • /
    • 2010
  • Nanoscale patterning using an atomic force microscope tip induced scratching was systematically investigated in AI thin film on 4H-SiC. To identify the effects of the scratch parameters, including the tip loading force, scratch speed, and number of scratches, we varied each parameters and evaluated the major parameter which has intimate relationship with the scale of patterns. In this work, we present the successful demonstration of nano patterning of Al thin film on a 4H-SiC substrate using an AFM scratching and evaluated the scratch parameters on Al/4H-SiC.

  • PDF

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.