• Title/Summary/Keyword: Al$_2$O$_3$/Al composite

Search Result 566, Processing Time 0.034 seconds

Effect of Glass Composition on the Properties of Glass-infiltrated Alumina(I) : Effect of Al2O3 (유리가 침투된 알루미나 복합체의 물성에 미치는 유리조성의 영향(I): Al2O3의 영향)

  • 이재희;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.301-308
    • /
    • 2003
  • Glass-infiltrated alumina, which can be used as an all-ceramic dental crown, was prepared. The glasses in the system of SiO$_2$-B$_2$O$_3$-Al$_2$O$_3$-CaO-La$_2$O$_3$with various amount of $Al_2$O$_3$infiltrated into a porous sintered alumina. The effect of $Al_2$O$_3$on the infiltration characteristics and its mechanical strength were studied. The corrosion of the sintered alumina by infiltrated glasses was prevented by increasing the amount of $Al_2$O$_3$in the glass batches, this increased the bending strength of the glass infiltrated alumina composite. The crack like voids in the sintered alumina was a cause of the deteriorating the mechanical strength of the composite, and this can be eliminated by sintering the alumina at 130$0^{\circ}C$. Glass infiltration under the vacuum atmosphere enhanced the hording strength of the composite up to 453$\pm$31 MPa.

Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods (제조방법에 따른 Al2O3-SiCw 복합체의 특성)

  • Lee, Dae-Yeop;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite

  • Lee, BooRak;Jeong, GeolChae;Park, GeunO;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.343-348
    • /
    • 2018
  • Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.

Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings (Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향)

  • Jin, Yeung-Jun;Park, Simon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung;Son, Eui-Jeong;Cha, Ju-Hong;Kang, Myung Chang;Lee, Ho-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2256-2261
    • /
    • 2017
  • Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

Dependence of Phase Stability of Tetragonal Zirconia Polycrystal on Dopants

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.297-303
    • /
    • 1998
  • The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.

  • PDF

Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating (Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF

Microstructure Control of Fibrous Monolithic Al2O3-ZrO2 Composites (섬유단상 Al2O3-ZrO2 세라믹 복합재료의 미세조직제어)

  • Kim, Ki-Hyun;Kim, Taek-Soo;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.213-218
    • /
    • 2003
  • Fibrous monolithic control of$ Al_2$$O_3$ -$ZrO_2$composite was investigated by multi-pass extrusion process. To obtain sound $Al_2$$O_3$-X $O_2$sintered bodies, burning out and sintering process were carefully carried out. The sintered bodies showed continuous, fibrous monolithic microstructure without any swelling. Many microcracks were observed at the $Al_2$$O_3$-$ZrO_2$interfaces due to the mismatching of thermal expansion coefficient between $Al_2$$O_3$ and $ZrO_2$phase. Most of m- $ZrO_2$grains included twin defects such as (001), (010) and (011) type to accommodate the phase transformation induced stress.