• Title/Summary/Keyword: Airways

Search Result 200, Processing Time 0.023 seconds

Social Network Comparison of Airlines on Twitter Using NodeXL (Twitter를 기반으로 한 항공사 소셜 네트워크 비교분석 - 카타르, 싱가포르, 에미레이트, ANA, 대한항공을 중심으로 -)

  • Gyu-Lee Kim;Jae Sub Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.81-94
    • /
    • 2023
  • The study aims to compare and analyze the social network structures of Qatar Airways,s Singapore Airlines, Emirates Airlines, and ANA Airlines, recording the top 1 to 4, and Korean Air in ninth by Skytrax's airline evaluations in 2022. This study uses NodeXL, a social network analysis program, to analyze the social networks of 5 airlines, Vertex, Unique Edges, Single-Vertex Connected Components, Maximum Geodesic Distance, Average Geodesic Distance, Average Degree Centrality, Average Closeness Centrality, and Average Betweenness Centrality as indicators to compare the differences in these social networks of the airlines. As a result, Singapore's social network has a better network structure than the other airlines' social networks in terms of sharing information and transmitting resources. In addition, Qatar Airways and Singapore Airlines are superior to the other airlines in playing roles and powers of influencers who affect the flow of information and resources and the interaction within the airline's social network. The study suggests some implications to enhance the usefulness of social networks for marketing.

The Role and Localization of Nitric Oxide Synthase in Neurogenic Inflammation of the Rat Airways (백서의 기도 선경성 염증에서 산화질소 합성효소(Nitric Oxide Synthase)의 역할과 분포)

  • Shim, Jae-Jeong;Lee, Sang-Yub;Lee, Sang-Hwa;Suh, Jung-Kyung;Kim, Chul-Hwan;Cho, Jae-Youn;In, Kwang-Ho;Yoo, Seo-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.3
    • /
    • pp.420-433
    • /
    • 1996
  • Background : There have been many debates about the effects of nitric oxide on the neurogenic inflammation. The role of nitric oxide in the neurogenic inflammation of airways will be required a better understanding of the localization and types of nitirc oxide synthase(NOS) activity in the neurogenic inflammation of airways. Method : To investigate the role of nitric oxide in airway neurogenic inflammation, 1) the effects of neurokinin receptor antagonist (FK224) and nitric oxide synthase inhibitor, $N^{\omega}$-nitro-L-arginine (L-NNA) on plasma extravastion were evaluated in four groups of Sprague-Dawley rats ; sham operation group(sham NANC group), electrical vagal stimulation group(NANC2 group), intravenous pretreatment groups with FK224 (1mg/kg ; FK224 group), and L-NNA(1mg/kg ; L-NNA group) 15 minutes before vagal NANC stimulation. 2) NOS activity in trachea with neurogenic inflammation was localized by immunohistochemical stain. Immunohistochemical stain was performed by antibodies specific for inflammatory cells(iNOS), brain(bNOS), and endothelium (eNOS) on trachea obtained from sham NANC, NANC2, and FK224 groups. Results : The results are that plasma extravsation in neurogenic inflammation of rat airways was inhibited by FK224, but enhanced by L-NNA pretreatment(P<0.05). There was significantly increased infiltration of inflammatory cells in subepithelium of neurogenic inflammatory trachea, but the reduction of subepithelial infiltration of inflammatory cells was observed after pretreatment with FK224(P<0.05). Immunostaining with anti-iNOS antibody showed strong reactivity only in infiltrated inflammatory cells in neurogenic rat trachea, and these iNOS reactivity was reduced by pretreatment with FK224. bNOS immunoreactivity was significantly increased only in the nerves both of neurogenic inflammatory and FK224 pretreated trachea compared with sham NANC trachea(p<0.05). eNOS immunoreactivity was not significant change in endothelium in neurogenic inflammation of rat trachea. Conclusion : These results suggest that nitric oxide released from iNOS in infiltrated inflammatory cells has main role in neurogenic inflammation of rat trachea. The presence of bNOS immunoreactivity in the nerves indicates that nitric oxide may be released from the nerves in rat trachea with neurogenic inflammation.

  • PDF

Airway Responses to Bronchoprovocation Using High-Resolution Computed Tomography in Patients with Bronchial Asthma (기관지천식환자에 있어서 고해상도 전산화단층촬영술을 이용한 기관지유발에 대한 기도의 반응)

  • Choi, Byoung-Whui;Kang, Yoon-Jeong;Ko, Hyung-Ki;Park, In-Won;Hue, Sung-Ho;Kim, Yang-Soo;Kim, Young-Goo;Kim, Kun-Sang;Kim, Jong-Hyo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.813-822
    • /
    • 1995
  • Background: Bronchial hyperresponsiveness and abnormal response such as a loss of distensibility are pathophysiologic characteristics if bronchial asthma. The only means of direct in vivo measurement of airway size had been a tantalium bronchography, until high-resolution computed tomography(HRCT) enabled to measure noninvasively two dimensional airway area more accurately and reliably. Method: To investigate airway area responses to bronchial provocation with methacholine and evaluate the major sites of bronchial constriction in patients with bronchial asthma. We examined HRCT scans in five patients with bronchial asthma who had significant bronchoconstriction(20% or more decrease in $FEV_1$) using CT scanner(5,000T CT, Shimadzu Co, Japan) before and in 3~5 min. after methacholine inhalation. Airways which were matched by parenchymal anatomic landmarks in each patient before and after methacholine inhalation were measured using film scanner(TZ-3X scanner; Truvel Co. Chatsworth CA, USA) and a semiautomated region growing method. Results: 1) We identified 9 to 12 airways in each patient which were matched by parenchymal anatomic landmarks before and after methacholine inhalation. 2) Airway responses to methacholine are quite different even in a patient. 3) The constriction of small airways(average diameter <2 mm; area < $3.14mm^2$) was 48.7%(8.3; SEM, n=43), being more prominant than that of large airways(average diameter >2 mm; area > $3.14mm^2$), 53.8% (4.4;SEM, n=10), but not significantly different(p>0.05). 4) There was no significant difference in the degree of constriction between upper(44.3% +5.8; mean + SEM, n=30) and lower lung regions(56.7% +4.5, n=23). Conclusions: Thus airway responses to methacholine bronchoprovocation is quite variable in a patient with bronchial asthma and has no typical pattern in patients with bronchial asthma.

  • PDF

Effects of FK224, a $NK_1$ and $NK_2$ Receptor Antagonist, on Plasma Extravasation of Neurogenic Inflammation in Rat Airways (미주 신경의 전기적 자극으로 유발된 백서의 기도내 혈장 유출에 대한 FK224의 효과)

  • Shim, Jae-Jeong;Lee, Sang-Yeub;Lee, Sang-Hwa;Park, Sang-Myun;Seo, Jeong-Kyung;Cho, Jae-Yun;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.744-751
    • /
    • 1995
  • Background: Asthma is an inflammatory disease because there are many inflammatory changes in the asthmatic airways. Axon reflex mechanisms may be involved in the pathogenesis of asthma. Sensory neuropeptides are involved in this inflammation, which is defined as neurogenic inflammation. Substance p, neurokinin A, and neurokinin B may be main neuropeptides of neurogenic inflammation in airways. These tachykinins act on neurokinin receptors. Three types of neurokinin receptors, such as $NK_1$, $NK_2$, and $NK_3$, are currently recognized, at which substance p, neurokinin A, and neurokinin B may be the most relevant natural agonist of neurogenic inflammation in airways. The receptor subtypes present in several tissues have been characterized on the basis of differential sensitivity to substance p, neurokinin A, and neurokinin B. Plasma extravasation and vasodilation are induced by substance p more potently than by neurokinin A, indicating NK1 receptors on endothelial cells mediate the response. But airway contraction is induced by neurokinin A more potently than by substance P, indicating the $NK_2$ receptors in airway smooth muscles. These receptors are used to evaluate the pathogenesis of brochial asthma. FK224 was identified from the fermentation products of Streptomyces violaceoniger. FK224 is a dual antagonist of both $NK_1$ and $NK_2$ receptors. Purpose: For a study of pathogenesis of bronchial asthma, the effect of FK224 on plasma extravasation induced by vagal NANC electrical stimulation was evaluated in rat airway. Method: Male Sprague-Dawley rats weighing 180~450gm were anesthetized by i.p. injection of urethane. Plasma extravasation was induced by electrical stimulation of cervical vagus NANC nerves with 5Hz, 1mA, and 5V for 2 minutes(NANC2 group) and for sham operation without nerve stimulation(control group). To evaluate the effect of FK224 on plasma extravasation in neurogenic inflammation, FK224(1mg/kg, Fujisawa Pharmaceutical Co., dissolved in dimethylsulphoxide; DMSO, Sigma Co.) was injected 1 min before nerve stimulation(FK224 group). To assess plasma exudation, Evans blue dye(20mg/kg, dissolved in saline) was used as a plasma marker and was injected before nerve stimulation. After removal of intravascular dye, the evans blue dye in the tissue was extracted in formamide($37^{\circ}C$, 24h) and quantified spectrophotometrically by measuring dye absorbance at 629nm wavelength. Tissue dye content was expressed as ng of dye per mg of wet weight tissue. The amount of plasma extravasation was measured on the part of airways in each groups. Results: 1) Vagus nerve(NANC) stimulation significantly increased plasma leakage in trachea, main bronchus, and peripheral bronchus compared with control group, $14.1{\pm}1.6$ to $49.7{\pm}2.5$, $17.5{\pm}2.0$ to $38.7{\pm}2.8$, and $12.7{\pm}2.2$ to $19.1{\pm}1.6ng$ of dye per mg of tissue(mean ${\pm}$ SE), respectively(p<0.05). But there was not significantly changed in lung parenchyma(p>0.05) 2) FK224 had significant inhibitory effect upon vagal nerve stimulation-induced airway plasma leakage in any airway tissues of rat,such as trachea, main bronchus, and peripheral bronchus compared with vagus nerve stimulation group, 49%, 58%, and 70%, respectively(p<0.05). Inhibitory effect of FK224 on airway plasma leakage in neurogenic inflammation was revealed the more significant in peripheral bronchus, but no significant in lung parenchyma. Conclusion: These results suggest that FK224 is a selective NK receptor antagonist which effectively inhibits airway plasma leakage induced by the endogenous neurotransmitters relased by neurogenic inflammation in rat airway. Tachykinin receptor antagonists may be useful in the treatment of brochial asthma.

  • PDF

Surgical Treatment of Mediastinal Aspergilloma in a Immunocompetent Patient

  • Lim, Jae Hong;Kim, Ji Seong;Yang, Chan Kyu;Kang, Chang Hyun;Kim, Young Tae;Park, In Kyu
    • Journal of Chest Surgery
    • /
    • v.47 no.4
    • /
    • pp.431-433
    • /
    • 2014
  • Aspergillus is a common saprophytic fungi of the human airways and causes a broad spectrum of diseases, ranging from aspergilloma to invasive aspergillosis. There are few reports on mediastinal aspergilloma without any underlying pulmonary disease or immunocompromise. Herein, we report a case of mediastinal aspergilloma that we experienced and treated by thoracoscopic resection and oral antifungal medication.

Humidifier disinfectants, unfinished stories

  • Choi, Yeyong;Paek, Domyung
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.4.1-4.2
    • /
    • 2016
  • Once released into the air, humidifier disinfectants became tiny nano-size particles, and resulted in chemical bronchoalveolitis. Families had lost their most beloved members, and even some of them became broken. Based on an estimate of two million potential victims who had experienced adverse effects from the use of humidifier disinfectants, we can say that what we have observed was only the tip of the iceberg. Problems of entire airways, as well as other systemic effects, should be examined, as we know these nano-size particles can irritate cell membranes and migrate into systemic circulation. The story of humidifier disinfectant is not finished yet.

Measurements of fractional exhaled nitric oxide in pediatric asthma

  • Hahn, Youn-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.10
    • /
    • pp.424-430
    • /
    • 2013
  • Exhaled nitric oxide (NO) has been extensively investigated as a noninvasive marker of airway inflammation in asthma. The increased NO expression induced by inflammatory mediators in airways can be monitored easily in exhaled air from asthmatic children. Based on the relationship between the increased NO expression and eosinophilic airway inflammation, fractional exhaled nitric oxide (FeNO) measurements become an important adjunct for the evaluation of asthma. In addition, the availability of portable devices makes it possible to measure FeNO more easily and frequently in the routine pediatric practice. Despite various confounding factors affecting its levels, FeNO can be applicable in diagnosing asthma, monitoring treatment response, evaluating asthma control, and predicting asthma exacerbations. Thus, although pulmonary function tests are the standard tools for objective measurements of asthmatic control, FeNO can broaden the way of asthma monitoring and supplement standard clinical asthma care guidelines.

Airway Remodelling in Asthma (기관지 천식에서의 기도 개형)

  • Lim, Dae Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.10
    • /
    • pp.1038-1049
    • /
    • 2005
  • Asthma is characterized by a chronic inflammatory disorder of the airways that leads to tissue injury and subsequent structural changes collectively called airway remodelling. Characteristic changes of airway remodelling in asthma include goblet cell hyperplasia, deposition of collagens in the basement membrane, increased number and size of microvessels, hypertrophy and hyperplasia of airway smooth muscle, and hypertrophy of submucosal glands. Apart from inflammatory cells, such as eosinophils, activated T cells, mast cells and macrophages, structural tissue cells such as epithelial cells, fibroblasts and smooth muscle cells can also play an important effector role through the release of a variety of mediators, cytokines, chemokines, and growth factors. Through a variety of inflammatory mediators, epithelial and mesenchymal cells cause persistence of the inflammatory infiltrate and induce airway structural remodelling. The end result of chronic airway inflammation and remodelling is an increased thickness of the airway wall, leading to a increased the bronchial hyperresponsiveness and fixed declined lung function.

The Role of Innate and Adaptive Immune Cells in the Immunopathogenesis of Chronic Obstructive Pulmonary Disease

  • Nurwidya, Fariz;Damayanti, Triya;Yunus, Faisal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.1
    • /
    • pp.5-13
    • /
    • 2016
  • Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory disease of the airways and lungs that results in limitations of continuous airflow and is caused by exposure to noxious gasses and particles. A major cause of morbidity and mortality in adults, COPD is a complex disease pathologically mediated by many inflammatory pathways. Macrophages, neutrophils, dendritic cells, and CD8+ T-lymphocytes are the key inflammatory cells involved in COPD. Recently, the non-coding small RNA, micro-RNA, have also been intensively investigated and evidence suggest that it plays a role in the pathogenesis of COPD. Here, we discuss the accumulated evidence that has since revealed the role of each inflammatory cell and their involvement in the immunopathogenesis of COPD. Mechanisms of steroid resistance in COPD will also be briefly discussed.

Left Wedge Pneumonectomy for the Complication of the Self Expandable Metallic Stent -A Case Report- (Self expandable Metallic Stent 합병증으로 인한 좌측 전폐 설상 절제술 -치험 1례-)

  • Kim, Jin;Shin, Hyeong-Ju;Kuh, Ja-Hong;Kim, Kong-Soo
    • Journal of Chest Surgery
    • /
    • v.28 no.2
    • /
    • pp.201-205
    • /
    • 1995
  • Most of the patient with endobronchial tuberculosis have some degree of bronchial stenosis. however, a part of bronchial stenosis need aggressive treatment for the patency because of severe symptoms. The self-expendable metallic stents provide palliative treatment for narrowed airways where surgical resection is inadvisable. We experienced a successful left wedge pneumonectomy on a 29-year-old woman with obstruction of left main bronchus due to complication of the bronchial stent. She had inserted self-expendable metallic stents on left main bronchus of the tuberculous bronchial stenosis two times. There was no specific postoperative complication.

  • PDF