• 제목/요약/키워드: Airway hypersecretion

검색결과 44건 처리시간 0.024초

자음강화탕(滋陰降火湯)이 호흡기 점액의 생성 및 분비에 미치는 영향 (Effect of Jaeumganghwa-tang on Production and Secretion of Respiratory Mucus)

  • 천진홍;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제30권2호
    • /
    • pp.31-46
    • /
    • 2016
  • Objectives In this study, the effects of Ja-eum-gang-hwa-tang (JGT) on the increase in airway epithelial mucosubstances of rats and ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Materials and Methods Hypersecretion of airway mucus was produced by exposure of $SO_2$ to rats for 3 weeks. The effect of orally-administered JGT for 2 weeks on increased epithelial mucosubstances from tracheal goblet cells of rats was assessed by using histopathological analysis after staining the epithelial tissue with Hematoxylin-eosin and PAS-alcian blue. Possible cytotoxicity of JGT was assessed by investigating the potential damage on kidneys and liver functions by measuring serum GOT/GPT activities and serum BUN concentration of rats and the body weight gain during experiment. Also, the effect of JGT on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of JGT and treated with ATP ($200{\mu}M$) or PMA ($10ng/ml$) or EGF ($25ng/ml$) or TNF-${\alpha}$ (0.2 nM) for 24 hrs to assess the effect of JGT both on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results (1) JGT decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) JGT did not show any renal and hepatic toxicities, and did not affect body weights either. (3) JGT significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) JGT inhibited EGF-, and PMA-induced expression levels of MUC5AC gene in NCI-H292 cells. However, ATP- and TNF-${\alpha}$-induced MUC5AC gene expression levels were not affected in NCI-H292 cells. Conclusions The result from the present study suggests that JGT might control the production and gene expression of airway mucin observed in various respiratory diseases which accompanied by mucus hypersecretion. Also, JGT did not show liver toxicity or impact on kidney functions. The effect of JGT should be further studied by using animal experimental models which can show proper pathophysiology of airway diseases.

소청용탕 및 가미치효산이 평흡기 배장세포로부터의 뮤신 분비에 미치는 영향 (Effects of Socheongryong-tang and Kamichihyo-san on Mucin Secretion from Airway Goblet)

  • 나도균;이충재;박양춘
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.734-739
    • /
    • 2004
  • In the present study, the author intended to investigate whether two oriental medical prescriptions named socheongryong-tang(SCRT) and Kamichihyo-san(KCHS) significantly affect mucin release from cultured hamster tracheal surface epithelial(HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with ³H-glucosamine for 24 hrs and chased for 30 min in the presence of SCRT or KCHS to assess the effect of each agent on ³H-mucin release. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Also, the effects of SCRT and KCHS on contractility of isolated tracheal smooth muscle were investigated. The results were as follows: (1) SCRT significantly inhibited mucin release from cultured HTSE cells, without cytotoxicity; (2) KCHS significantly increased mucin release without cytotoxicity; (3) SCRT and KCHS did not affect contractility of isolated tracheal smooth muscle. We suggest that the effects of SCRT and its components should be further investigated and it is of great value to find, from oriental medical prescriptions, novel agents which have the possible inhibitory effects on mucin release from the viewpoint of management of hypersecretion of airway mucus.

Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells

  • Poachanukoon, Orapan;Koontongkaew, Sittichai;Monthanapisut, Paopanga;Pattanacharoenchai, Napaporn
    • Tuberculosis and Respiratory Diseases
    • /
    • 제80권1호
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. Methods: Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)-induction of mucin and TNF-${\alpha}$ in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1-500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone ($1{\mu}g/mL$) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-${\alpha}$ in culture supernatants were measured using enzyme-linked immunosorbent assay. Results: MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-${\alpha}$. Conclusion: Our findings demonstrated that MF and BUD attenuated mucin and TNF-${\alpha}$ production in PMA-induced human airway epithelial cells.

청조구폐탕(淸燥救肺湯)과 이음전(理陰煎)이 호흡기 접액분비에 미치는 영향 (Effects of Cheongjogupye-tang(淸燥救肺湯) and Yieum-jeon(理陰煎) on Secretion of Mucin from Respiratory Epithelial Cells)

  • 박완열;서운교
    • 대한한방내과학회지
    • /
    • 제29권2호
    • /
    • pp.318-333
    • /
    • 2008
  • Objectives : In this study, the author tried to examine whether Cheogjogupye-tang (淸燥救肺湯, CGPT) and Yieum-jeon (理陰煎, YEJ) significantly affect in vitro and in vivo mucin secretion, MUC5AC gene expression in airway epithelial cells and contractility of isolated tracheal smooth muscle of rabbit. Materials and Methods : For in vitro experiment, confluent hamster tracheal surface epithelial (HTSE) cells were chased for 30 minutes in the presence of CGPT and YEJ to assess the effects of the agents on mucin secretion by enzyme-linked immunosorbent assay (ELISA), with removal of oriental herbal medicine extract from each agent-treated sample by centrifuge microfilter. Also, the effects of the agents on TNF-alpha or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. Possible cytotoxicities of the agent were assessed by examining both LDH release from HTSE cells and the rate of survival and proliferation of NCI-H292 cells. For in vivo experiment, hypersecretion of airway mucin and goblet cell hyperplasia was induced by exposure of rats to $SO_2$ over 3 weeks. Effects of CGPT and YEJ orally administered for 1 week on in vivo mucin secretion from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using ELISA and histological analysis after staining the epithelial tissue with alcian blue, respectively. Also, the effects of CGPT and YEJ on contractility of isolated tracheal smooth muscle were investigated. Results : (1) CGPT significantly inhibited in vitro mucin secretion from cultured HTSE cells. However, YEJ did not affect in vitro mucin secretion; (2) CGPT and YEJ did not affect hypersecretion of in vivo mucin and hyperplasia of tracheal goblet cells; (3) CGPT and YEJ slightly increased the expression levels of TNF-alpha or EGF-induced MUC5AC gene in NCI-H292 cells; (4) CGPT and YEJ inhibited acetylcholine-induced contraction of isolated tracheal smooth muscle of rabbit; (5) CGPT and YEJ did not affect LDH release from HTSE cells and the survival and proliferation of NCI-H292 cells. Conclusion : The results from the present study suggest that CGPT and YEJ mainly affect the expression of mucin gene rather than secretion of mucin and do not show remarkable cytotoxicity to respiratory epithelial cells.

  • PDF

Influence of rutin on the effects of neonatal cigarette smoke exposure-induced exacerbated MMP-9 expression, Th17 cytokines and NF-κB/iNOS-mediated inflammatory responses in asthmatic mice model

  • Liu, Li-Li;Zhang, Yan;Zhang, Xiao-Fang;Li, Fu-Hai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.481-491
    • /
    • 2018
  • Allergic asthma is one of the most enduring diseases of the airway. The T-helper cells and regulatory T-cells are critically involved in inflammatory responses, mucus hypersecretion, airway remodelling and in airway hyper-responsiveness. Cigarette smoke (CS) has been found to aggravate inflammatory responses in asthma. Though currently employed drugs are effective, associated side effects demand identification and development of novel drugs with negligible or no adverse effects. Rutin, plant-derived flavonoid has been found to possess antioxidant and anti-inflammatory effects. We investigated the ability of rutin to modulate T-cells and inhibit inflammation in experimentally-induced asthma in cigarette smoke exposed mice. Separate groups of neonatal mice were exposed to CS for 10 days from post-natal days 2 to 11. After 2 weeks, the mice were sensitized and challenged with ovalbumin (OVA). Treatment group were given rutin (37.5 or 75 mg/kg body weight) during OVA sensitization and challenge. Rutin treatment was found to significantly inhibit cellular infiltration in the airways and Th2 and Th17 cytokine levels as well. Flow cytometry revealed effectively raised $CD4^+CD25^+Fox3^+$ Treg cells and supressed Th17 cell population on rutin treatment. Airway hyper-responsiveness observed following CS and OVA challenge were inhibited by rutin. $NF-{\kappa}B$ and iNOS, chief regulators of inflammatory responses robustly activated by CS and OVA were down-regulated by rutin. Rutin also inhibited the expression of matrix metalloproteinase 9, thereby aiding in prevention of airway remodelling in asthma thereby revealing to be a potent candidate in asthma therapy.

PDZ Peptide of the ZO-1 Protein Significantly Increases UTP-Induced MUC8 Anti-Inflammatory Mucin Overproduction in Human Airway Epithelial Cells

  • Han Seo;Hyun-Chae Lee;Ki Chul Lee;Doosik Kim;Jiwook Kim;Donghee Kang;Hyung-Joo Chung;Hee-Jae Cha;Jeongtae Kim;Kyoung Seob Song
    • Molecules and Cells
    • /
    • 제46권11호
    • /
    • pp.700-709
    • /
    • 2023
  • Mucus hyperproduction and hypersecretion are observed often in respiratory diseases. MUC8 is a glycoprotein synthesized by epithelial cells and generally expressed in the respiratory track. However, the physiological mechanism by which extracellular nucleotides induce MUC8 gene expression in human airway epithelial cells is unclear. Here, we show that UTP could induce MUC8 gene expression through P2Y2-PLCβ3-Ca2+ activation. Because the full-length cDNA sequence of MUC8 has not been identified, a specific siRNA-MUC8 was designed based on the partial cDNA sequence of MUC8. siRNA-MUC8 significantly increased TNF-α production and decreased IL-1Ra production, suggesting that MUC8 may downregulate UTP/P2Y2-induced airway inflammation. Interestingly, the PDZ peptide of ZO-1 protein strongly abolished UTP-induced TNF-α production and increased IL-1Ra production and MUC8 gene expression. In addition, the PDZ peptide dramatically increased the levels of UTP-induced ZO proteins and TEER (trans-epithelial electrical resistance). These results show that the anti-inflammatory mucin MUC8 may contribute to homeostasis, and the PDZ peptide can be a novel therapeutic candidate for UTP-induced airway inflammation.

건폐탕(健肺陽)이 호흡기 뮤신의 생성 및 유전자 발현에 미치는 영향 (Effect of Geonpye-tang(GPT) on Production and Gene Expression of Respiratory Mucin)

  • 정병진;김호;서운교
    • 대한한방내과학회지
    • /
    • 제30권4호
    • /
    • pp.685-695
    • /
    • 2009
  • Objectives : In this study, the author tried to investigate whether Geonpye-tang(GPT) significantly affects PMA-, EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells. Materials and Methods : Effects of the agent on PMA-, EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of GPT and treated with PMA (10ng/ml) or EGF (25ng/ml) or TNF-alpha (0.2nM), to assess both effect of the agent on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicity of the agent was assessed by examining the rate of survival and proliferation of NCI-H292 cells after treatment with the agent over 72 hrs (SRB assay). Results : (1) GPT significantly inhibited PMA-induced and EGF-induced MUC5AC mucin production from NCI-H292 cells. However, GPT did not affect TNF-alpha-induced MUC5AC mucin production. (2) GPT significantly inhibited the expression levels of PMA-, EGF- or TNF-alpha-induced MUC5AC genes in NCI-H292 cells (3) GPT did not show significant cytotoxicity to NCI-H292 cells. Conclusion : This result suggests that GPT can affect the production and gene expression of respiratory mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion. This can explain the traditional use of GPT in oriental medicine. Effects of GPT with their components should be further investigated using animal experimental models that reflect pathophysiology of airway diseases through future studies.

  • PDF

Luteolin reduces fluid hypersecretion by inhibiting TMEM16A in interleukin-4 treated Calu-3 airway epithelial cells

  • Kim, Hyun Jong;Woo, JooHan;Nam, Yu-Ran;Seo, Yohan;Namkung, Wan;Nam, Joo Hyun;Kim, Woo Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.329-338
    • /
    • 2020
  • Rhinorrhea in allergic rhinitis (AR) is characterized by the secretion of electrolytes in the nasal discharge. The secretion of Cl- and HCO3- is mainly regulated by cystic fibrosis transmembrane conductance regulator (CFTR) or via the calcium-activated Cl- channel anoctamin-1 (ANO1) in nasal gland serous cells. Interleukin-4 (IL-4), which is crucial in the development of allergic inflammation, increases the expression and activity of ANO1 by stimulating histamine receptors. In this study, we investigated ANO1 as a potential therapeutic target for rhinorrhea in AR using an ANO1 inhibitor derived from a natural herb. Ethanolic extracts (30%) of Spirodela polyrhiza (SPEtOH) and its five major flavonoids constituents were prepared. To elucidate whether the activity of human ANO1 (hANO1) was modulated by SPEtOH and its chemical constituents, a patch clamp experiment was performed in hANO1-HEK293T cells. Luteolin, one of the major chemical constituents in SPEtOH, significantly inhibited hANO1 activity in hANO1-HEK293T cells. Further, SPEtOH and luteolin specifically inhibited the calcium-activated chloride current, but not CFTR current in human airway epithelial Calu-3 cells. Calu-3 cells were cultured to confluency on transwell inserts in the presence of IL-4 to measure the electrolyte transport by Ussing chamber. Luteolin also significantly inhibited the ATP-induced increase in electrolyte transport, which was increased in IL-4 sensitized Calu-3 cells. Our findings indicate that SPEtOH and luteolin may be suitable candidates for the prevention and treatment of allergic rhinitis. SPEtOH- and luteolin-mediated ANO1 regulation provides a basis for the development of novel approaches for the treatment of allergic rhinitis-induced rhinorrhea.

Effects of Diclofenac, Acetamonophen, Nimesulide and Acetylsalicylic Acid on Mucin Release from Cultured Hamster Tracheal Surface Epthelial Cells

  • HEO Ho Jin;LEE Hyun Jae;YOON Chi Soon;LIM Seung Pyong;SEOK Jeong Ho;LEE Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.246-250
    • /
    • 2005
  • In this study, we tried to investigate whether diclofenac, acetaminophen, nimesulide, acetylsalicylic acid and tumor necrosis factor-alpha (TNF-alpha) significantly affect mucin release from cultured airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3H$-glucosamine for 24 hr and chased for 30 min or 24 hr in the presence of each agent to assess the effects on $^3H$-mucin release. The results were as follows: (1) TNF-alpha significantly increased mucin release from cultured HTSE cells during 24 hr of treatment period; (2) However, diclofenac, acetaminophen, nimesulide and acetylsalicylic acid did not affect mucin release, during 30 min of treatment period. Basically, this finding suggests that non-steroidal antiinflammatory drugs (NSAIDs) might not function as a mucoregulator in various inflammatory respiratory diseases showing mucus hypersecretion, although further studies are needed.

중합도 50mer 이하의 염기성 아미노산 중합체들이 일차배양 햄스터 기관표면 상피세포에서의 생리적 뮤신유리 및 분비자극 상태에서의 뮤신유리에 미치는 영향 (Effects of Polymerized Basic Amino Acids Under 50mer Range of Degree of Polymerization on Physiological and Stimulated Mucin Release from Cultured Hamster Tracheal Surface Epithelial Cells)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • 제10권3호
    • /
    • pp.156-164
    • /
    • 2002
  • In the present study, we tried to investigate whether polymerized basic amino acid e.g. poly-L-lysine (PLL) which has the degree of polymerization under 50mer significantly affects the physiological and stimulated mucin release from cultured hamster tracheal surface epithelial cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3{H}$-glucosamine for 24 hr and chased for 30 min in the presence of either PLLs or adenosine triphosphate (ATP) and PLL to assess the effects on basic or ATP-stimulated $^3{H}$-mucin release. Possible cytotoxicities of PLLs were assessed by measuring lactate dehydrogenase (LDH) release from HTSE cel1s during treatment. The results were as follows: PLLs significantly inhibited basic mucin release from cultured HTSE cells in a dose-dependent manner from the range of 46mer to 14mer; PLL 46mer significantly inhibited the stimulated mucin release by ATP from cultured HTSE cells; there was no significant release of LDH from cultured HTSE cells during treatment. We conclude that PLLs inhibit both physiological and stimulated mucin release from airway epithelial cells without significant cytotoxicity and PLL lost its activity under the range of 14mer. This finding suggests that polymer of basic amino acid like PLL might function as a regulator for hypersecretion of mucus manifested in various respiratory diseases.