• Title/Summary/Keyword: Airport surface

Search Result 74, Processing Time 0.021 seconds

A Study on Taxi Route Extraction Based on a Node-Link Model for Aircraft Movements on Airport Surface (노드링크 모델 기반 항공기 공항 지상이동 경로 추출 기법에 대한 연구)

  • Jeong, Myeongsook;Eun, Yeonju;Kim, Hyounkyoung;Jeon, Daekeun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.51-60
    • /
    • 2017
  • Estimation of the taxi-out and taxi-in times of aircraft on a airport surface is one of the essential features of Departure Manager (DMAN). Especially for an airport with multiple runways and large ramp areas, estimation of the taxi-out and taxi-in times are mainly dependent on the taxi routes on airport surface. This paper described the method of automatic extraction of the the taxi routes using the ASDE track data and the Dijkstra algorithm based on the node-link model of a airport surface movements. In addition, we analyzed the ground operation status of Incheon International Airport using the extracted taxi routes.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.

Pavement Impact Evaluation of Basic Materials of Airport Airside Deicers (공항 airside용 제설제의 기본물질에 대한 포장 영향성 평가 연구)

  • Kim, Young Ung;You, Kwang Ho;Jo, Chang Yeol;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.25-34
    • /
    • 2016
  • OBJECTIVES : This is a basic research for the domestic production of airport-airside deicers. This research selected basic materials for deicers appropriate for the pavement of domestic airports by evaluating the deicing performances of basic materials used in international-standard airport deicers and their impacts on pavements. METHODS : Laboratory investigation was conducted to evaluate the asphalt surface tensile strength, concrete scaling impact, ASR impact, and deicing performances of sodium formate (NaFm), potassium formate (KFm), sodium acetate (NaAc), and potassium acetate (KAc), which are the basic de-icing materials commonly used at international airports, approved by the FAA. In addition, the analyses were also performed on the airside deicer urea, which is currently used in domestic airports. RESULTS : Laboratory investigation confirmed that sodium formate, potassium formate, sodium acetate, and potassium acetate had superior surface tensile strength, concrete scaling impact, and deicing performance compared to airside urea, but they also had greater impacts on concrete ASR. Among these materials, sodium formate had the best asphalt surface tensile strength, concrete scaling impact, and deicing performance, while also having the greatest impact on ASR; hence, mitigation plans for ASR were needed, if it were to be used as airport-airside deicer. CONCLUSIONS : It is necessary to consider additional additives to prevent ASR of concrete pavements when developing airport-airside deicers using sodium formate, potassium formate, sodium acetate, and potassium acetate.

Development of Runway Incursion Risk Assessment Checklist (활주로 침범 위험 분석 체크리스트 개발)

  • Maeng, Sung-Kyu;Jung, Yoon-Sik;Choi, Jin-Kook;Kwon, Bo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.46-54
    • /
    • 2012
  • One major safety issue of surface operations is the occurrence of runway incursions. Runway incursions are the consequence of multiple operational and/or environmental factors. Human error is known to contribute to almost every runway incursion. One major contributing factor for runway incursion is crew's lack of situational awareness during airport surface operations, induced by weather considerations, by complex airport factors or by crew technique itself; it is also caused by ATC issues. Various airport factors may affect pilot situational awareness, distract the crew, or lead to crew confusion. The recommendations to avoid runway incursions are manifold; Proper Crew's CRM/TEM skills, adequate communication technique, proper knowledge of airport surface markings, lights and signs and preparation of preparation of expected taxi out/in routing. Also runway incursion risk assessment on specific airport before flight may lead to aware of risk level and contribute to prevent runway incursion.

A Study on Evaluating the Applicability of Trapezoidal-shaped Grooves to Airport Runways (사다리꼴 형상 그루빙의 공항 활주로 적용성 평가 연구)

  • Cho, Nam-Hyun;Kim, Dong-Chul;Phi, Seung-Woo;Shin, Joong-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • This study is to evaluate the applicability and performance of trapezoidal-shaped grooves on domestic airport runways. For this, the constructability, drainage performance, and friction resistance characteristics of trapezoidal-shaped grooves compared to square-shaped grooves were evaluated through test construction on pavement at Incheon Airport. As a result of the test construction, the trapezoidal-shaped grooves satisfies the required geometry standards and tolerance, and secured a macrotexture that was 25% improved compared to the square-shaped grooves. It was confirmed that trapezoid-shaped grooves secured drainage performance of more than 7-9%, and surface friction performance improved compared to existing grooves when the surface of the pavement was wet as the test speed increased in the dry state. In addition, after trapezoidal-shaped grooves was installed on the RWY 16R/34L of Incheon Airport, the friction coefficient was 0.84, which satisfies the design level of the new runway surface of 0.82 at the test speed.

First-Come First-Served Airport Surface Movement Scheduling (항공기 지상 이동 선입 선처리 스케줄링)

  • Kang, Seon-Young;Park, Bae-Seon;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • An airport surface movement scheduler using first-come first-served (FCFS) algorithm is developed to efficiently manage surface traffic in an airport. It is based on the previously developed traffic flow management scheduler. Link directionality and intersection processing, which are additional constraints for ground movement, are added to the scheduler. To verify each of additional constraints, several simulations were performed by making simple scenarios, and the results show that all constraints were satisfied. Also, a simulation was performed by making a scenario based on flight operation information system (FOIS) data which is real departure and arrival flight data of Jeju airport. To determine the practicality of the developed scheduler, we compare the actual average delay time with the average delay time calculated by the scheduler.

Variation of Friction Coefficient of Airport Runway Surface by Rubber Deposits (고무 퇴적물에 의한 공항 활주로 표면 마찰계수 변화)

  • Cheon, Sung-Han;Lim, Jin-Sun;Park, Joo-Young;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2010
  • In this paper, overseas criteria and research results were reviewed to develop a rational criterion proper to domestic airport runways on measurement of friction coefficient and removal of rubber deposit. The friction coefficients of the runways of the Incheon International Airport were measured by the ASFT(Airport Surface Friction Tester) from August 2007 to July 2009 and the data at intensively landed points were analyzed. Variation of the friction coefficient due to accumulation and removal of tire rubber was analyzed and seasonal influence on the variation were investigated by pavement types. The friction coefficient steadily decreased over a long term despite periodical removal of the rubber deposits. The variation of the friction coefficient in summer was larger than other seasons and asphalt pavement was more sensitive to the seasonal influence than concrete pavement. The friction coefficient of the asphalt pavement with macro texture was even larger than that of early age concrete pavement with micro texture. The variation of the friction coefficient of the asphalt pavement due to the deposit and removal of the tire rubber was also larger than that of the concrete pavement.

Smart Airport and Next Generation Security Screening Technology (스마트공항과 차세대 보안검색 기술)

  • Hong, J.W.;Oh, J.H.;Lee, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Airport is shifted airport 1.0 to airport 4.0 called smart airport and services paradigm is changed into direction to point the customer targeted benefits. Smart airports make use of integrated Internet of Things components to provide added-value services. By integrating smart components, airports are being exposed to a larger attack surface and new attack vectors. Self-services such as web or mobile check-in, self check-in/tagging/back drop/boarding, etc. should be strengthened to make airport processes smarter, and technologies such as automatic immigration, smart security search, and automatic AI-based baggage search should be applied. In this paper, we describe the necessity and importance of smart airports and next generation security screening technology. Further, we describe a walk through-type smart security screening system.

Impact of Air Pollutant Emissions from Aircraft on the Air Pollution around Airport (항공기 배출량 산정 방법에 따른 공항주변 대기오염 영향분석연구)

  • Han, Seung-Jae;Yoo, Jung-Woo;Lim, Yoon-Jin;Lee, Soon-Hwan;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2089-2099
    • /
    • 2014
  • Emissions from aircraft have impacts on the air pollution of airport and the surrounding area. There are methods of emissions calculated as Tier 1, Tier2, Tier 3A and Tier 3B. Thus, this study investigated emissions from aircraft at the Gimhae International Airport using EDMS(Emissions & Dispersion Modeling System) program. Results of estimation from aviation emissions, Tier 3B considering all parts which can occur at the airport has the largest amount emissions. In order to understand the relation between aviation emissions and distribution of ozone concentration over airport area, numerical evaluation were carried out. Although the difference of surface ozone distribution between numerical assessment with and without aviation emissions was little, effects of air pollution at airport area from aviation emissions of NOx and VOCs.

A Study on an Application of the Protection for the Visual Segment of the Approach Procedure focused on Taean Airport (접근절차의 시계구간 보호 적용 연구 - 태안비행장을 중심으로 -)

  • Kim, Dohyun;Hong, Seung Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • 'Visual segment surface' means a surface that extends from the missed approach point of non precision approaches (or the decision altitude location for approaches with vertical guidance and precision approaches) to the threshold to facilitate the identification of and protection from obstacles in this visual segment of the approach. Validation is the necessary final quality assurance step in the procedure design process, prior to publication. The purpose of validation is the verification of all obstacle and navigation data, and assessment of flyability of the procedure. This paper shows how to apply the protection for the visual segment of the approach procedure, and the results of the validation for visual segment surface conducted at an airport.