• Title/Summary/Keyword: Aircraft wiring

Search Result 12, Processing Time 0.02 seconds

Validation on Usability of Time Domain Reflectometer for Identifying Defected Aircraft Wiring (항공기 배선 결함 식별을 위한 TDR(시간영역 반사계) 활용 적합성)

  • Kim, Su-Woong;Lee, Jang-Ryong
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2020
  • Wiring defect is a major concern for safe aircraft operations. However, troubleshooting process of a wiring defect is very difficult due to extensive and complex wiring system and installed location. Recently, time domain reflectometer (TDR) equipment that enables effective defected wiring troubleshooting has been introduced. Unfortunately, TDRs have not practically adopted by most of airlines' maintenance departments because the effectiveness and usefulness of TDRs have not been verified. This study was conducted to verify if TDRs can identify the location and type of defected aircraft wiring, and whether they can be applied for troubleshooting purposes. Experimental plan was established by using various wires and connections applied to actual aircraft and the observed results were compared with the TDR operation guide. The usability of the TDR in actual aircraft wiring defect detection may be acceptable as the experimental results showed similar results to the TDR operation guide.

EWIS Reliability Analysis of Aging Fighter Aircraft through Teardown Inspection (완전분해 점검을 통한 장기운영 전투기 전기배선시스템의 신뢰성분석)

  • Lee, Hoyong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.116-121
    • /
    • 2018
  • According to the incresement of aging aircraft, Republic of Korea Air Force (RoKAF) conducted a teardown inspection of aircraft's EWIS (electrical wiring interconnection system) to determine the status of deterioration and the influence of failure occurrences due to it. The inspected aircraft were the retired fighter jets that had been used for more than 40 years. By analyzing defect type and the defect tendency, RoKAF can establish the necessary measures for the usage extension of their fleet and furthermore, the analysis results can be used as a basic data for the preparation of it's aircraft aging. EWIS inspection was done throughout careful visual inspection technique by removing all the ducts and pipes located in the fuselage and wings. For the aircraft wiring where no damage was found, the elongation tests were performed to determine the deterioration of wiring according to the location of the aircraft. The connectors, which is the main cause of intermittent failure, were completely disassembled and inspected for internal damage such as corrosion, abrasion, and traces of foreign objects. The detected defects were classified into 4 severity levels based on the type of damage, and the classified defects were weighted according to the criticality which may affects to it's system to establish the action plan.

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia;Chung, You Chung;Lo, Chet;Pendayala, Praveen
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.25-46
    • /
    • 2006
  • Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

Development and Verification of Aircraft Controller and Transceiver Considering Lightning Induced Transient Susceptibility (유도낙뢰를 고려한 항공기용 제어기 및 송수신기 개발 및 검증)

  • Seo, Jung-Won;Park, Jae-Soo;Yoon, Chang-Bae;Hong, Su-Woon;Jung, Byoung-Koo;Shin, Young-Jun;Ha, Jung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.583-593
    • /
    • 2018
  • Lightning causes physical damage to aircraft, such as melting, burning and arcing, and magnetic field that occurs on the aircraft's outer body during the penetration of a lightning stroke causes voltage and current transients in the electronics and wiring within the aircraft. This effect will cause induced lightning strikes in the aircraft's internal airborne electronic systems, preventing safe flight. This paper introduces protection circuit design techniques, and the test results that meet the requirements for certification of criteria.

LRU Layout Method Using Genetic Algorithm (유전 알고리즘을 이용한 LRU 최적배치 방법)

  • Back, Sun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.849-858
    • /
    • 2021
  • It is difficult to establish a quantitative standard because there are many factors to consider, such as environmental conditions, airworthiness, and maintainability, in determining the installation location of equipment in an aircraft. In addition, as the number of equipment increases, the design proposal increases exponentially, so the design is proceeding depending on the experience of the designer much in order to review it within a limited time schedule. In this paper, a method of calculating the length and weight of the wiring harness according to the location of the equipment and a method of optimizing the weight of the wiring harness and the CG of the equipment using genetic algorithms are described in order to create a quantitative standard useful by comparing the optimal design and the actual design.

A study on the application of agile method to resolve electric system issues in the performance improvement of aged aircraft in the phase of mass production (양산 단계 노후 항공기 성능 개량에서 전기계통 이슈 해결을 위한 애자일 기법 적용연구)

  • In-Bok, Yoon;Kyeong-Soo, An
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.560-567
    • /
    • 2022
  • This paper proposed an application of agile management method to resolve the electrical system issues identified during the mass production phase of aged aircraft performance improvement. The proposed method was applied from issue analysis to on-site verification and testing stage, before the formal configuration control process. At this time, the project was carried out by setting a sprint period to complete the verification according to requirements through daily scrum and sprint review. As a result, It was verified that the wiring installation of the aircraft, which was the output of the sprint, met requirements within the defined sprint period.

Cause Analysis and Improvement of Signal Interference in Byteflight Data Bus

  • Kwon, Jung-Hyuk;Tak, Su-Pyeong;Kwon, Ik-Hyun;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.50-58
    • /
    • 2021
  • Byteflight is developed based on RS-485 communication (an international standard), and it can be used as a data bus during the operation of an integrated avionics system in the latest aircraft. Therefore, the integrated avionics system can perform an effective and safe flight mission only when the accurate and seamless display of flight information, communication, and accurate functions of navigation are implemented. In this study, cause analysis and failure investigation were performed on screen abnormalities and communication interruptions due to signal interference in the Byteflight data bus of the integrated avionics system during aircraft operation. To improve signal interference between avionics units, the branch point and wiring path of the Byteflight data bus were changed, and the verification result of the improved method was also described.

Elimination of Screen-Flickering Phenomenon in Multi-Function Display During Flight of Fixed-Wing Aircraft

  • Kwon, Jung-Hyuk;Kwon, Ik-Hyun;Beak, Jun-Ho;Jang, Geun-Hyung;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this study, we aim to eliminate the flickering phenomenon in multi-function display (MFD) units during the flight of fixed-wing aircraft. To execute flight missions effectively, the video signals transmitted to MFDs must provide information accurately and seamlessly. Therefore, a method for addressing the flickering phenomenon-including cause analysis and failure diagnosis-is adopted; specifically, a wiring configuration with a direct connection between the video signal cables and with a short cable length is adopted. The proposed method is experimentally verified using a flight test.

A Study on certification plan on Radio Frequency Identification for Airplane Use (항공산업에 활용되는 무선인식 기반 시스템 인증 방안)

  • Han, Sang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.236-244
    • /
    • 2008
  • The evolution and application of RFID technologies have been at the forefront of allowing aviation industries to improve the quality of aircraft maintenance and air cargo handling. However, safety problems in airplane operation are arising from the hazards of frequencies transmitted due to RFID systems. Though the intensities of frequencies back-scattered from the tags are very weak, some malfunctions are anticipated due to induction coupling on aircraft wiring. Therefore, safety assessment such as electromagnetic compatability should be accomplished upon aircraft critical and essential equipments before installations.

  • PDF

A Study on the Quality Improvement of Electrical Master Box in Aircraft Vibration Environment (항공기 진동 환경에서의 전원분배장치 품질개선 연구)

  • Seo, Youngjin;Lee, Yoonwoo;Jang, Minwook;Jo, Jihyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.181-189
    • /
    • 2019
  • An aircraft power distribution device distributes and controls the power generated by the generator and provides overcurrent protection. There are many defect phenomena that make AC power distribution impossible during flight, which poses a problem in because some electronic equipment cannot be operated. We describe a process of deriving the root cause of defects by using vibration testing equipment to simulate the vibration conditions during aircraft flight, which result in defects. The results show that the cause of the defect is internal wiring damage caused by the vibration of the contactor of the AC power distribution device. Therefore, the shape of the contactor was improved to solve this problem. We also improved the test procedure by performing defect detection tests using vibration testing equipment to detect a faulty contactor. As a result of the improvements, a component certification test and flight test proved that the defect phenomena of the AC electrical master box were improved.