• Title/Summary/Keyword: Aircraft propulsion system

Search Result 110, Processing Time 0.023 seconds

Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle (고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구)

  • Kim, Boseong;Bak, Jeonggyu;Yun, Senghyun;Cho, Sooyoung;Ha, Juhyung;Park, Gyusung;Lee, Geunho;Won, Sunghong;Moon, Changmo;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1097-1107
    • /
    • 2015
  • General VTOL aircraft uses gas turbine engine which has high power to weight ratio. However, in the VTOL UAV in small sector, the gas turbine as a prime mover is not adequate because of the limitation of the high fuel consumption ratio of the gas turbine. In this research, The Series Hybrid-Electric Propulsion System(SHEPS) has been proposed and technology survey & comparison analysis has conducted to constitute propulsion system for engine, electric motor and battery. To achieve this object a 65kg-class P-UAV from "Company I" was used. And to estimate the validity of power control algorithm and developed power management control, Matlab/simulink$^{(R)}$ has been used for the simulation. As a result, the developed algorithm worked comparatively well and the research has predicted that SHEPS was satisfied enough for 7 hour of endurance for mission profile.

Aerodynamic Design and Performance Prediction of Highly-Loaded 1 Stage Axial Compressor (고부하 1단 축류형 압축기 공력 설계 및 성능 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.101-104
    • /
    • 2010
  • Recently, needs for UAVs and small aircraft and small turbo jet or turbo fan engines for these air-crafts are increasing. Size and weight are the two main restrictions in small air-crafts such as UAV or VLJ propulsion system applications. Therefore, high power density is required in small size and designers come up with unconventional solutions in the design of small aero gas turbine engines. One of the solutions is the usage of highly loaded axial compressors. This paper introduces an aerodynamic design method of a highly loaded axial compressor and its review process. Numerical simulation has been carried out to assess the aerodynamic performance of the compressor.

  • PDF

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

COMBINED ACTIVE AND PASSIVE REMOTE SENSING OF HURRICANE OCEAN WINDS

  • Yueh, Simon H.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.142-145
    • /
    • 2006
  • The synergism of active and passive microwave techniques for hurricane ocean wind remote sensing is explored. We performed the analysis of Windsat data for Atlantic hurricanes in 2003-2005. The polarimetric third Stokes parameter observations from the Windsat 10, 18 and 37 GHz channels were collocated with the ocean surface winds from the Holland wind model, the NOAA HWind wind vectors and the Global Data Assimilation System (GDAS) operated by the National Center for Environmental Prediction (NCEP). The collocated data were binned as a function of wind speed and wind direction, and were expanded by sinusoidal series of the relative azimuth angles between wind and observation directions. The coefficients of the sinusoidal series, corrected for atmospheric attenuation, have been used to develop an empirical geophysical model function (GMF). The Windsat GMF for extreme high wind compares very well with the aircraft radiometer and radar measurements.

  • PDF

Design of Ring type PMSM for aircraft propulsion system (항공기 추진용 Ring-type PMSM 설계)

  • Lee, Jae Kwang;Lee, Ki-Doek;Jung, Jae Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.908-909
    • /
    • 2015
  • 본 논문은 항공기 추진용 전동기에 대한 논문으로 전동기 내부에 블레이드가 삽입되는 특징으로 인해 매우 얇은 요크폭과 항공기 시스템 효율을 위해 가볍게 설계해야 한다는 점을 제약조건으로 갖는 Ring-type PMSM 설계에 관한 논문이다. 본 논문에 언급되는 전동기의 경우 내부에 삽입되는 블레이드로 인해 내부 요크 폭이 매우 얇다는 제약조건에서 어떠한 전동기 타입이 적절한지 검토하였고, 네오디움(NdFeB) 자석을 사용하여 높은 자속밀도로 고출력을 얻는 동시에 높은 도전율과 얇고 넓은 자석 형상에 따라 발생하는 손실을 저감하기 위한 설계를 진행하였고 유한요소해석을 통해 감자를 고려하여 전자기적 성능을 확인하였다.

  • PDF

Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by using the Nano-Size Additive Aluminum Particle (나노 알루미늄 입자 첨가 추진제에 의한 탄소복합재 노즐의 기계적 삭마 감소 특성 예측)

  • Tarey, Prashant;Kim, Jaiho;Levitas, Valeny I.;Ha, Dongsung;Park, Jae Hyun;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.42-53
    • /
    • 2015
  • In this study, the influence of Al particle size, as an additive for solid propellant, on the mechanical erosion of the carbon-composite nozzle was evaluated. A new model which can predict the size and distribution of the agglomerated reaction product($Al(l)/Al_2O_3(l)$) was established, and the size of agglomerate were calculated according to the various initial size of Al in the solid propellant. With predicted results of the model, subsequently, the characteristics of mechanical erosion on the carbon-composite nozzle was estimated using a commercial CFD software, STAR CCM+. The result shows that the smaller the initial Al particles are, in the solid propellant, the lower is the mechanical erosion rate of the composite nozzle wall, especially for the nano-size Al particle.

Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade (터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석)

  • 김완식;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The present study investigates numerically particle laden flow through compressor cascade. In general, a lot of turbine engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor binding and rotor path components, partial or total blockage of cooling passage and engine control system degradation.. Initial damages can not be serious but cumulation of damages influences on safety of aircraft control and economical maintenance cost of engine system can be increased. When dust, materials and volcanic particles in the atmosphere flow in the compressor, it is necessary to predict damaged and deposited region of compressor blades. To the various flow inlet angle, predictions of particles trajectory in compressor cascade by Lagrangian method are presented and impulses by impaction of particles at blade surface are calculated. By the definition of particle deposition efficiency, characteristics of particles impact are considered quantitatively. With these prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Improvements like coating of blade surface could be found, by above prediction.

  • PDF

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume (항공기 배기 플룸의 파장별 IR 신호 해석)

  • Gu, Bonchan;Baek, Seung Wook;Yi, Kyung Joo;Kim, Man Young;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.640-647
    • /
    • 2014
  • Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.

A Performance Analysis of 60 Horsepower Vertical Mounted Gasoline Engine Applied to Multi-copter of Unmanned Aircraft Vehicle (무인 멀티콥터에 적용된 60마력급 직립형 가솔린 엔진의 성능 분석)

  • RYUNKYUNG KIM;KYUNGWAN KO;SUNGGI KWON;GYECHOON PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.758-766
    • /
    • 2023
  • Multi-copter of unmanned aerial vehicle (UAV) was initially developed as strategic technology in the only military field, but it is developing into an industrial field with a wide range of applications in the civil sector based on the development and convergence of aviation technology and information and communication technology. Currently, the degree of utilization of multi-copter is increasing in various industries for the purpose of performing classic tactical missions, logistics transportation, farm management, internet supply, video filming, weather management, life-saving, etc, and active technology development responding to market demand. Existing commercial multi-copter mainly use an electric energy propulsion system consisting of an electric battery and a brushless direct current (BLDC) motor. It is the limitations for usage in the flying time (up to 20 minutes) and payload (less than 20 kg). this study aims to overcome these limitations and expand the commercialization of engine-powered multi-copter of UAV in various industries in the futures.

Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations (분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해)

  • Murugesan, Ramki;Park, Gyoung Lark;Levitas, Valery I.;Yang, Heesung;Park, Jae Hyun;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.54-63
    • /
    • 2015
  • We present a microscopic understanding of the chemical erosion due to combustion product on the nozzle throat using molecular dynamics simulations. The present erosion process consists of molecule-addition step and equilibrium step. First, either $CO_2$ or $H_2O$ are introduced into the system with high velocity to provoke the collision with graphite surface. Then, the equilibrium simulation is followed. The collision-included dissociation and its influence on the erosion is emphasized and the present molecular observations are compared with the macroscopic chemical reaction model.