• 제목/요약/키워드: Aircraft impact

검색결과 319건 처리시간 0.028초

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.

면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석 (Impact force and acoustic analysis on composite plates with in-plane loading)

  • 김성준;박일경;안석민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.244-249
    • /
    • 2011
  • The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edges, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

  • PDF

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석 (Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor)

  • 송유섭;신상섭;정동호;박대효
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.715-722
    • /
    • 2011
  • 본 논문에서는 항공기 충돌에 의한 원전 격납건물의 거동을 병렬해석을 통해 수행하였다. 지금까지의 원전 격납건물에 대한 항공기 충돌관련 연구는 항공기의 경우, Riera의 충격하중-시간함수를 이상화하여 대상 구조체의 일정영역에 대해 충격하중으로 적용하는 방법을 사용해 왔고 충돌대상 구조체의 경우, 단순 철근콘크리트 벽체나 빌딩에 머물러 왔다. 하지만 본 논문에서는 항공기(Boeing-767, http://www.boeing.com)와 가상의 원전 격납건물을 실제와 유사하게 모델링하여 해석을 수행하였으며, 항공기모델은 충돌평가 가이드인 NEI 07-13(2009)에서 허용하는 Riera의 식에 따른 충돌하중이력곡선과 비교하는 방법으로 검증되었다. 또한, 일반적으로 고속 충돌해석은 짧은 시간동안 두 개 이상의 물체가 접촉하고 동적 대변형을 일으키는 비선형성이 강한 문제로 많은 계산시간이 요구되기 때문에 이를 효과적으로 다루기 위해서는 단일 CPU만으로는 한계가 있다. 따라서 본 논문에서는 해석의 효율성을 향상시키기 위해 자체 구축한 리눅스 클러스터 시스템을 이용하여 Message-Passing MIMD 형태의 병렬해석을 수행하였고 병렬성능에 대한 평가를 위해 무근콘크리트(Plain Concrete, PC), 철근콘크리트(Reinforced Concrete, RC), 내부 Liner Plate를 부착한 철근콘크리트(RC with Containment Liner Plate, CLP), SC구조(Steel-Plate Concrete, SC)등 4가지 경우에 대한 수치해석 효율성이 비교 검토되었다.

특허분석을 통한 항공기반산업의 기술경쟁력에 관한 연구 (A Study on the Technological Competitiveness of Aircraft Infra Industries by using Patents)

  • 정하교;황규승
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2007년도 추계학술대회 및 정기총회
    • /
    • pp.43-57
    • /
    • 2007
  • This paper considers the technological competitiveness of aircraft infra industries that are bases of the aircraft industry development in Korea. We performed focus group interviews to aircraft industry specialists and classified the aircraft infra industries by eight fields: metallurgical assembly, general machinery, precision instruments, materials & parts, communication appliances, computer, semi-conductor/ electronic component, electronics. Through the United States patents analysis for the G7 countries and Korea during 1995-2006, we identified the technological specificities and competences of each country. RTA(Revealed Technology Advantage) index and CII(Current Impact Index) are used to examine the technological specificity and technological competence respectively. Finally, we introduced TCI(Technological Competitiveness Index) which could reflect quantitative level as well as qualitative level of patents for each aircraft infra industry. The results show that Korea has occupied the technological competitiveness in the semi-conductor and electronic component industry out of eight aircraft infra industries, and achieved a competitive edge in communication appliance industry in the mid 2000s.

  • PDF

항공기소음의 환경영향평가에 관한 연구 II : 소음평가 개선방안 (Study on EIA of Aircraft Noise II : Noise Assessment Improvement Plan)

  • 선효성;박영민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.193-195
    • /
    • 2006
  • In order to minimize the influence of aircraft noise in the vicinity of domestic airports, the establishment of proper land-use plan according to the influence scope of aircraft noise in the opening part of preparing a housing site around domestic airports is needed. For the purpose of doing it, the environmental impact assessment accompanied by the accurate prediction of aircraft noise distribution is preceded, and this paper describes the improvement plan for performing the trustworthy environmental impact assessment of aircraft noise in the neighborhood of domestic airports.

  • PDF

사용후연료 운반용기의 격납 성능에 미치는 항공기 엔진 충돌위치의 영향 고찰 (Investigation on Effect of Aircraft Engine Crash Location on Containment Performance of a Spent Nuclear Fuel Transport Cask)

  • 김종성;김창종
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.69-74
    • /
    • 2023
  • The paper presents the results investigating the effect of aircraft engine impact location on the intended function evaluation results of spent nuclear fuel transport cask. As a result of the investigation, it is found that the structural integrity is maintained as the maximum accumulated equivalent plastic strain is below the acceptable criterion regardless of the collision location. It is identified that when the aircraft engine collided with the upper part of the transport cask without considering impact limiter the containment performance is weakened compared to when the aircraft engine collided with the central part.

Safety Assessment of a Metal Cask under Aircraft Engine Crash

  • Lee, Sanghoon;Choi, Woo-Seok;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.505-517
    • /
    • 2016
  • The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact loade-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.