• Title/Summary/Keyword: Aircraft equipment

Search Result 331, Processing Time 0.017 seconds

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Implementation of ZUPT on RPA Navigation System for GNSS Denied Ground Test

  • Shin, Hyeoncheol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this paper, Zero velocity UPdaTe (ZUPT) is implemented on the navigation system of Remotely Piloted Aircraft for GNSS denied environment. RPA's navigation system suffers from lack or loss of satellite signal while maintenance or ground test inside a hangar. Although some of the hangars install GPS repeaters for indoor tests, the anti-jamming equipment with array antenna blocks the repeater signal regarding them as hostile jamming signal. With ZUPT, an aircraft navigation system can be tested free from the divergence of navigation solution without line-of-sight satellites. The designed ZUPT aided centralized Kalman Filter is implemented on the Embedded GPS&INS and simulated with Captive Flight Test data. The simulation result shows stable navigation solution without GNSS updates.

On the Design and Test for the 150 Gallon Composite External Fuel Tank (150갤런 복합재 외부연료탱크 설계 및 시험평가)

  • Chang, Inki;Kim, Changyoung
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • The 150 gal Ion EFT(External Fuel Tank) used to enlarge the aircraft operation range was adopted an import equipment in T-50 FSD phase. But in Production phase the EFT was planed to develop for the stable ILS(Integrated Logistics Support) and technical ability improvement by using the composite materials. The design for configuration and fuel system is intended to maintain compatibility with aircraft systems and the development test is performed on component, assembly and aircraft. This study is conducted to provide the technology of design and test for the 150 gallon composite EFT in LRU level. The test results show that the composite EFT is satisfied with structural, functional and environment requirements which are described in specification.

  • PDF

Computational Simulation of Lightning Strike on Aircraft and Design of Lightning Protection System (항공기 낙뢰 전산 시뮬레이션 및 보호시스템 설계)

  • Kim, Jong-Jun;Baek, Sang-Tae;Song, Dong-Geon;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1071-1086
    • /
    • 2016
  • The safety of aircraft can be threatened by environmental factors, such as icing, turbulence, and lightning strike. Due to its adverse effects on aircraft structure and electronic components of aircraft, lightning strike is one of the biggest hazards on aircraft safety. Lightning strike can inject high voltage electric current to the aircraft, which may generate strong magnetic field and extreme hot spots, leading to severe damage of structure or other equipment in aircraft. In this work, mechanism of lightning strike and associated direct and indirect effects of lightning on aircraft were studied. First, on the basis of aircraft lightning regulations provided by Aerospace Recommended Practice (ARP), we considered different lightning waveform and zones of an aircraft. A coupled thermal-electrical computational model of ABAQUS was then used for simulating flow of heat and electric current caused by a lightning strike. A study on fuel tank, with and without lightning protection system, was also conducted using the computational model. Finally, electric current flow on two full scale airframes was analyzed using the EMA3D code.

Analysis of Indirect Lightning Impact on Aircraft Shielded Cable Structure in accordance with RTCA DO-160G Sec. 22 (항공기용 차폐 케이블의 구조에 따른 RTCA DO-160G Sec. 22 간접낙뢰 영향성 분석)

  • Sung-Yeon Kim;Tae-Hyeon Kim;Min-Seong Kim;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.35-45
    • /
    • 2023
  • In this paper, we analyze the influence of indirect lightning strikes based on the structure of shielded cables used in an aircraft and propose a cable structure to enhance shielding effectiveness. Cables in an aircraft account for the largest proportion among components and play a crucial role in connecting aircraft frames and electronic devices; thus, making them highly influential. In particular, indirect lightning strike noise can lead to malfunctions and cause damage in aircraft electronic equipment, making the utilization of shielded cables essential for mitigating damage caused by indirect lightning strike noise. We conducted an analysis of the impact of indirect lightning strikes on aircraft shielded cables considering factors, such as the presence of shielding layers, core, and insulation in the cable structure. Furthermore, we validated our findings through simulations and experiments by applying the internationally recognized standard for indirect lightning, RTCA DO-160G Sec. 22.

A Study on the Economic Life Cycle Decision Method of Aircraft Direct Support Equipment (항공기 지원 장비 경제수명 결정에 관한 연구)

  • Kim, Si Yeon;Choi, Bong-Wan;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.193-201
    • /
    • 2014
  • This study attempts to utilize the economic efficiency analysis results focused on the break-even point as an indicator for the decision making of commanders and staff. We suggested a method of determining economic life by utilizing logistics information system and commercial program Minitab with a focus on the equipment's operational environment and performance data, whereas previously the equipment's retirement period was simply determined by the current equipment prices and sustainable period.

Software Design and Verification Method of Flight Data Recorder for Unmanned Aerial Vehicle (무인항공기용 비행자료 기록장치 소프트웨어 설계 및 검증 방안)

  • Yang, Seo-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.163-172
    • /
    • 2020
  • Flight data recorder (FDR) for accident investigation is required to comply with EUROCAE(ED-112) standard so that flight data can be restored when exposed to extreme conditions due to aircraft crash. Since the ED-112 standard defines the general requirements for all aircraft, it is essential to analyze detailed requirements for FDR software to apply appropriate requirements selectively according to the configuration and operation concept of a specific aircraft. In this paper, the software requirements applicable to unmanned aircraft will be analyzed and the FDR software design will be proposed. Also, a software verification method for each requirement will be presented to verify that the implemented software is designed to satisfy all requirements.

A Feasibility Study on Multiple DME Positioning Considering Time-Misaligned Range Measurements (시각 비동기 오차를 고려한 다중 DME 측위 적용 방안 연구)

  • Choi, Kwang-Ho;Lim, Joon-Hoo;Yoo, Won-Jae;So, Hyoungmin;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.534-543
    • /
    • 2015
  • This paper introduces the time-misalignment error between multiple range measurements acquired by an onboard distance measuring equipment (DME) interrogator and proposes an efficient position determination method that can mitigate the negative effects of the time-misalignment error. The introduced time-misalignment error does not occur in conventional utilization of DME combined with VHF omnidirectional range (VOR). The proposed position determination method projects all the DME range measurements acquired irregularly during an interval to the same time instance where the aircraft position is determined. By the simulation utilizing a representative aircraft trajectory, it is shown that it is possible to estimate the horizontal position accurately without any changes of ground DME facilities.

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft (회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선)

  • Bang, Daehan;Lee, Sook;Lee, Sanghoon;Choi, Sangmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.

A Study on Structural Design and Analysis of Small Engine Test Equipment for Use in Aircraft (항공기 소형 엔진 시험 장치의 구조 설계 및 해석 연구)

  • Back, Kyeongmi;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The subject of this study dealt with the structural safety analysis regarding the measured thrust test equipment as noted on a small engine. In this work, the structural design and analysis of steel and aluminum alloy structure for a small engine test of equipment were performed. Firstly, the structural design requirements of the engine test equipment were identified and investigated. After the structural design was reviewed, next the structural analysis of the engine test equipment was performed by the utilization of the finite element analysis method. The study was performed to determine that the stress and displacement analysis was appropriately managed regarding the applied load condition. As a result, it was determined that through the structural analysis, this study has confirmed that the designed engine test equipment is approved for safety, and meets its design purpose at this time.