• Title/Summary/Keyword: Aircraft Upset

Search Result 7, Processing Time 0.019 seconds

Real-time Aircraft Upset Detection and Prevention Based On Extended Kalman Filter (확장칼만필터를 이용한 항공기 비정상 비행상황 판단 및 방지를 위한 실시간 대처법 연구)

  • Woo, Beomki;Park, On;Kim, Seungkeun;Suk, Jinyoung;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.724-733
    • /
    • 2017
  • Accidents caused by upset condition leads to fatal damage to both manned and unmanned aircraft. This paper deals with real-time detection of these aircraft upset situations to prevent further severe situations. Firstly, the difference between sensor measurement and predicted measurement from Extended Kalman filter is monitored to determine whether a target aircraft goes into an upset condition or not. In addition, repeating the time update stage of the Extended Kalman filter for a specific length of time can enable future upset situation prediction. The results of aforementioned both the approaches will build a bridge to upset prevention for future generation of manned/unmanned aircraft.

Real-time System Identification of Aircraft in Upset Condition Using Adaptive-order Zonotopic Kalman Filter (적응 차수 조노토픽 칼만 필터를 활용한 비정상 비행상태 항공기의 실시간 시스템 식별)

  • Gim, Seongmin;Harno, Hendra G.;Saderla, Subrahmanyam;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • It is essential to prevent LoC(Loss-of-Control) or upset situations caused by stall, icing or sensor malfunction in aircraft, because it may lead to the crash of the aircraft. With this regard, it is crucial to correctly identify the dynamic characteristics of aircraft in such upset conditions. In this paper, we present a SID(System IDentification) method utilizing the moving-window based least-square and the adaptive-order ZKF(Zonotopic Kalman Filter), which is more effective than the existing Kalman-filter based SID for the aircraft in upset condition at a high angle of attack with temporary sensor malfunction. The proposed method is then tested on real flight data and compared with the existing one.

Analysis of Aircraft Upset through TEM and Improvement of UPRT (항공기 비정상 자세 사고의 TEM 분류 및 UPRT 향상에 관한 연구)

  • Choi, Jin-Kook;Jeon, Seung-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.365-374
    • /
    • 2019
  • Loss of Control in Flight(LOC-I) due to aircraft upset attitude has the highest air accident rate, and International Aviation Institute such as ICAO and FAA recommended flight crew to operate aircraft safely through UPRT(Upset Prevention & Recovery Training) program. ICAO has selected Loss of Control(LOC) as key safety indicator, and recommended to respond using TEM(Threat and Error Management). However there are not much specific treats and errors classified for UPRT programs using real TEM based on evidences. This study intends to consider the importance of UPRT through the introduction of UPRT and accident analysis using TEM. Typical upset accidents were classified to common threats as IFR, inadequate training, Automation surprise, and inexperienced copilots. The common errors were cross-check, speed and altitude deviation, callouts, communication, thrust and stall action fail. The undesired aircraft states were inadequate automation mode, Deviation of speed and vertical, stall, and crash. These suggest areas to improve UPRT.

항공기 시스템 및 항공전자 장비의 낙뢰 간접영향에 대한 감항성 인증

  • Han, Sang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.247-259
    • /
    • 2005
  • The interactions of natural atmospheric electricity with aircraft reveals many flight safety problems. It is estimated that on average, each commercial airplane is struck by lightning more than once each year. Thus the lightning strike to aircarft poses an appreciable threat to flight safety. Upset or damage of electrical and electronics equipment by the induced voltages is defined as indirect effect. The protection of aircraft electronics from the indirect effects of lightning can be accomplished first by determining the specific threats to the aircraft and systems contained within, and second, by designing protection methods to the aircraft components.

  • PDF

A Study on the Upset Prevention & Recovery Training Method for Navy Fixed Wing Pilots Using P-3 Simulator (P-3C 시뮬레이터를 활용한 해군 고정익조종사 UPRT 훈련 방안에 대한 연구)

  • Jung-bong Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.293-299
    • /
    • 2023
  • UPRT(Upset Prevention And Recovery Training) is an accident prevention training program developed over a three-year period after the main cause of aircraft accidents in commercial aviation between 2001 and 2011 was analyzed as LOC-I(Loss Of Control Flight). In 2014, ICAO presented UPRT for fixed-wing aircraft through Doc.10011(Manual On Aeroplane Upset Prevention And Recovery Training) and recommended mandatory implementation to Contracting States from March 2019. Since naval P-3C is a major mission of maritime patrol and anti-submarine warfare, it takes a lot of time to fly at low altitude (70-600 m), and the majority of P-3C pilots have experienced spatial disorientation, so Upset prevention and recovery training is essential for naval P-3C pilots. To this end, this study intends to present measures for UPRT from limited conditions using the P-3C simulator owned by the Navy.

A Study on Mechanical Properties According to the Radius Change Position of Outer Circumference in A2024-T4 Friction Welding (A2024-T4 마찰용접(摩擦熔接)시 반경 변화에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Park, Keun-Hyung;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.109-116
    • /
    • 2007
  • The present study examined mechanical properties according to the change of outer circumference in the friction welding of A2024-T4 stock, which is used much as aircraft structure, truck wheel, stainless materials and A2024-T4 stock with 10 hollow at the center. Welding conditions were fixed at RPM 2,000rpm, friction pressure of 50MPa, friction time of 1.5sec, upset pressure of 120MPa and upset time of 2.0 seconds. From the result of this study were drawn conclusions as follows : According to the result of a tensile strength test, the solid shaft showed linear increase of tensile strength with the change of outer circumference, the hollow shaft showed maximum tensile stength when the length (L) was 2mm and decrease of tensile strength with the change of outer circumference, hardness appeared to increase and then decrease for welding interface, and it showed maximum hardness 155Hv at L=5mm of the solid shaft. Bending strength increased linearly far change of the distance (L) of outer circumference in the solid shaft and then decreased linearly in the hollow shaft. the result of examining tissue, the tissue grew finer around the welding interface and divided the basic material and the welding surface.

Effects of Meteorological Conditions and Self-instruction on Anxiety and Performance of Helicopter Pilots in Flight (기상 조건과 자기 교시가 조종 중인 헬리콥터 조종사의 불안 및 수행에 미치는 영향)

  • MunSeong Kim;ShinWoo Kim;Hyung-Chul O. Li
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Anxiety is known to upset the balance of the attentional system and prioritize the stimulus-driven system over the goal-directed system; however, self-instruction induces goal-directed behavior with the self-regulation effect. This study verified the effects of meteorological and self-instruction conditions on pilot anxiety and flight task performance for in-service pilots in a virtual reality environment. The meteorological conditions were divided into visual meteorological and very low visibility conditions, and the flight tasks were conducted by varying whether or not self-instruction was performed. The experiment results reveal that anxiety and heart rate were higher, and the performance of the flight task was lower in the very low visibility condition. However, anxiety and heart rate were lower, and the performance of the flight task was higher in the self-instruction condition. This result suggests that accidents due to difficulty in flight may increase because of anxiety, but such accidents may decrease because of flight performance improvement by self-instruction.