DOI QR코드

DOI QR Code

Real-time System Identification of Aircraft in Upset Condition Using Adaptive-order Zonotopic Kalman Filter

적응 차수 조노토픽 칼만 필터를 활용한 비정상 비행상태 항공기의 실시간 시스템 식별

  • Gim, Seongmin (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Harno, Hendra G. (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Saderla, Subrahmanyam (Indian Institute of Technology Kanpur) ;
  • Kim, Yoonsoo (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2021.10.31
  • Accepted : 2021.01.17
  • Published : 2022.02.01

Abstract

It is essential to prevent LoC(Loss-of-Control) or upset situations caused by stall, icing or sensor malfunction in aircraft, because it may lead to the crash of the aircraft. With this regard, it is crucial to correctly identify the dynamic characteristics of aircraft in such upset conditions. In this paper, we present a SID(System IDentification) method utilizing the moving-window based least-square and the adaptive-order ZKF(Zonotopic Kalman Filter), which is more effective than the existing Kalman-filter based SID for the aircraft in upset condition at a high angle of attack with temporary sensor malfunction. The proposed method is then tested on real flight data and compared with the existing one.

실속, 결빙, 센서 이상 등으로 인해 일어나는 제어불능 또는 비정상 비행 상황은 항공기의 추락으로 이어지기 때문에 필수적으로 대비해야 한다. 이와 관련해 비정상 비행 상황에서 항공기의 동적 특성을 정확하게 파악하는 것은 매우 중요하다. 본 논문에서는 일시적인 센서 이상이 발생한 고받음각의 비정상 비행상태 항공기에 대해서 기존의 칼만 필터 기반의 시스템 식별법 대비 보다 효과적인 적응 차수 조노토픽 칼만 필터와 이동창-최소자승법을 활용한 시스템 식별법을 제시하였다. 제안한 방법을 실제 비행 데이터에 적용하고 그 성능을 기존 연구 결과와 비교하였다.

Keywords

Acknowledgement

본 연구는 2017 과학기술정보통신부의 재원으로 한국연구재단의 지원(NRF-2017R1A5A1015311)을 받아 수행되었습니다.

References

  1. Belcastro, C. M. and Jacobson, S. R., "Future integrated systems concept for preventing aircraft loss-of-control accidents," AIAA Guidance, Navigation, and Control Conference, August 2010, pp. 1~16.
  2. Morelli, E. A., "In-Flight System Identification," AIAA 23rd Atmospheric Flight Mechanics Conference, August 1998, pp. 238~247.
  3. Tempo, R. and Wasilkowski, G. W., "Maximum likelihood estimators and worst case optimal algorithms for system identification," Systems & Control Letters, Vol. 10, No. 4, April 1988, pp. 265~270. https://doi.org/10.1016/0167-6911(88)90016-3
  4. Chen, S., Billings, S. A. and Grant, P. M., "Non-linear system identification using neural networks," International Journal of Control, Vol. 51, No. 6, 1990, pp. 1191~1214. https://doi.org/10.1080/00207179008934126
  5. Hsiao, T., "Identification of Time-Varying Autoregressive Systems Using Maximum a Posteriori Estimation," IEEE Transactions on Signal Processing, Vol. 56, No. 8, 2008, pp. 3497~3509. https://doi.org/10.1109/TSP.2008.919393
  6. Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems," Journal of Basic Engineering, Vol. 82, No. 1, Mar. 1960, pp. 35~45. https://doi.org/10.1115/1.3662552
  7. Kaufman, H., "Aircraft Parameter Identification Using Kalman Filtering," Proceedings of the National Electronics Conference, Vol. 25, 1969, pp. 85~89.
  8. Speyer, J. L. and Crues, E. Z., "On-line aircraft state and stability derivative estimation using themodified-gain extended Kalman filter," JGCD, Vol. 10, No. 3, May 1987, pp. 262~268.
  9. Chowdhary, G. and Jategaonkar, R., "Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter," Aerospace science and technology, Vol. 14, No. 2, March 2010, pp. 106~117. https://doi.org/10.1016/j.ast.2009.10.003
  10. Seo, G., Kim, Y. and Saderla, S., "Kalman-filter based online system identification of fixed-wing aircraft in upset condition," Aerospace Science and Technology, Vol. 89, June 2019, pp. 307~317. https://doi.org/10.1016/j.ast.2019.04.012
  11. Wang, H., Kolmanovsky, I. V. and Sun, Jing., "Zonotope-based recursive estimation of the feasible solution set for linear static systems with additive and multiplicative uncertainties," Automatica, Vol. 95, September 2018, pp. 236~245. https://doi.org/10.1016/j.automatica.2018.05.035
  12. Harno, H. G., Kim, Y., Moon, J. and Bang, H., "Zonotopic Kalman filtering for stability augmentation and flight envelope estimation," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 235, No. 15, December 2021, pp. 2288~2298. https://doi.org/10.1177/0954410021995389
  13. Le, V. T. H., Stoica, C., Alamo, T., Camacho, E. F. and Dumur, D., Zonotopes: From guaranteed state-estimation to control, Wiley, 2013.
  14. Combastel, C., "Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence," Automatica, Vol. 55, May 2015, pp. 265~273. https://doi.org/10.1016/j.automatica.2015.03.008
  15. Combastel, C., "An Extended Zonotopic and Gaussian Kalman Filter (EZGKF) merging set-membership and stochastic paradigms: Toward non-linear filtering and fault detection," Annual Reviews in Control, Vol. 42, 2016, pp. 232~243. https://doi.org/10.1016/j.arcontrol.2016.07.002
  16. Saderla, S., Dhayalan, R., Singh, K., Kumar, N. and Ghosh, A. K., "Longitudinal and lateral aerodynamic characterization of reflex wing Unmanned Aerial Vehicle from flight tests using Maximum Likelihood, Least Square and Neural Gauss Newton methods," The Aeronautical Journal, Vol. 123, No. 1269, 2019, pp. 1~33. https://doi.org/10.1017/aer.2018.111
  17. Botez, N. A. and Popescu, D., "Stability derivatives for a delta-wing X-31 aircraft validated using wind tunnel test data," Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, Vol. 225, 2011, pp. 403~416.
  18. Hanen B., Mohamed, W. N. and Ilhem, S. B., "Easy and Fast Sensor Fault Detection and Isolation Algorithm for Electrical Drives," IEEE Transactions on Power Electronics, Vol. 27, No. 2, 2012, pp. 490~499. https://doi.org/10.1109/TPEL.2011.2140333