• Title/Summary/Keyword: Aircraft System Integration

Search Result 97, Processing Time 0.025 seconds

A Study on the Application of CMMI for Aircraft Software Development Process Improvement (CMMI를 활용한 항공기 소프트웨어 개발 프로세스 개선에 관한 연구)

  • Lee, Sung-Ju;Yoon, Jae-Wook;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.1-18
    • /
    • 2006
  • CMMI(Capability Maturity Model Integration) has been recognized as a critical method to validate the competitiveness of software development organization since its introduction. CMMI imposes additional requirements on the software development organization which has been established and certified to the ISO 9001 quality management system. This paper reviews the similarities and differences between CMMI and ISO 9001. This paper also examines what ate required to deploy the CMMI on the aircraft software development organization which has been certified to ISO 9001. The results of this study will help software development organization to provide the direction for implementing CMMI. Some suggestions are presented to identify and strengthen the weak portion of the software process quality management system.

Catching-Up and National Environment: The Case of the Korean Aircraft Industry

  • Hwang, Chin-Young
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2000.11a
    • /
    • pp.227-245
    • /
    • 2000
  • Korean firms have attempted to catch up in the aircraft industry during last quarter century. Korean firms have built up their capabilities by moving from parts manufacturing through subassembly to system integration. The number of projects carried out and the intensity of technological effort undertaken by firms strongly influences market position and firm performance. However, successful catching up is not simply dependent on capability building within the firm. The national environment (Porter, 1990) in which firms are located plays a pivotal role. The Korean government has been effective in creating a favorable environ-ment in many areas, but has not been able to replicate this success in the aircraft industry. Opportunities for learning in the aircraft industry have been hampered by the small size of the Korean civilian aircraft market and the sophisticated requirements of military systems. A policy of domestic rivalry in airframe manufacture has created too many firms for such a small market. The ability of Korean firms to catch up in the aircraft industry depends on both the internal capabilities of firms as well as appropriate government policies and the involve- ment of government research institutions and universities over an extended period of time. There have been many studies about the catching up of developing countries in mass production (such as automobile, consumer electronics, and recently DRAM), but few in complex systems, such as aircraft.

  • PDF

A Study on Processor Monitoring for Integration Test of Flight Control Computer equipped with A Modern Processor (최신 프로세서 탑재 비행제어 컴퓨터의 통합시험을 위한 프로세서 모니터링 연구)

  • Lee, Cheol;Kim, Jae-Cheol;Cho, In-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1081-1087
    • /
    • 2008
  • This paper describes limitations and solutions of the existing processor-monitoring concept for a military supersonics aircraft Flight Control Computer (FLCC) equipped with modern architecture processor to perform the system integration test. Safecritical FLCC integration test, which requires automatic test for thousands of test cases and real-time input/output test condition generation, depends on the processor-monitoring device called Processor Interface (PI). The PI, which relies upon on the FLCC processor's external address and data-bus data, has some limitations due to multi-fetching capability of the modern sophisticated military processors, like C6000's VLIW (Very-Long Instruction Word) architecture and PowerPC's Superscalar architecture. Several techniques for limitations were developed and proper monitoring approach was presented for modem processor-adopted FLCC system integration test.

A Case Study on Collaborative Activities for Newly Installation of an Engine in a Helicopter (헬기 엔진의 신규장착을 위한 지원 사례 연구)

  • Ahn, Ieeki;Kim, Jae-Hwan;Sung, Oksuk
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • From the flight safety and the performance point of views, a new engine installation impacts an helicopter development or upgrade program significantly. More than a close relationship between an aircraft manufacturer and an engine manufacturer is necessary for the best integration work from the program initiation phase. In this paper, technical cooperation between aircraft and engine companies, and technical supports by the engine manufacturer for the T700/701K engine during the Surion development program are summarized. The applications of official technical program documents, US Mil-spec, France airworthiness regulations as the standard of the engine installation work, and engineering activities at each phase such as contract, design and manufacturing, flight clearance, ground and flight tests are described. This paper would be a cornerstone for the future domestic helicopter development program.

Automatic Flight Control System Development for Optionally Piloted Vehicle (유무인 겸용 비행체의 자동비행조종시스템 개발)

  • Lee, Sangjong;Choi, Hyoung Sik;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.968-973
    • /
    • 2014
  • Optionally Piloted Vehicle is one of the UAV development technology and method, which can provide the economic and efficient unmanned system. Existing manned aircraft is evaluated through much flight operations and it can supply the reliable aircraft platform, engine and subsystems for operation. In addition, OPV can be operated both manned and unmanned vehicle to satisfy the mission requirement. under the certain flight conditions. This paper describes main development procedures for automatic flight control system of OPV and summarizes the technical issues and results.

A Study on the Architecture for Avionics System of Jet Fighters (제트 전투기의 항공전자 시스템 아키텍처에 관한 연구)

  • Gook, Kwon Byeong;Won, Son Il
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-96
    • /
    • 2022
  • The development trend of jet fighter's avionics system architecture is the digitization of subsystem component functions, increased RF sensor sharing, fiber optic channel networks, and modularized integrated structures. The avionics system architecture of the fifth generation jet fighters (F-22, F-35) has evolved into an integrated modular avionics system based on computing function integration and RF integrated sensor systems. The integrated modular avionics system of jet fighters should provide improved combat power, fault tolerance, and ease of jet fighter control. To this aim, this paper presents the direction and requirements of the next-generation jet fighter's avionics system architecture through analysis of the fifth generation jet fighter's avionics system architecture. The core challenge of the integrated modularized avionic system architecture requirements for next-generation fighters is to build a platform that integrates major components and sensors into aircraft. In other words, the architecture of the next-generation fighters is standardization of systems, sensor integration of each subsystem through open interfaces, integration of functional elements, network integration, and integration of pilots and fighters to improve their ability to respond and control.

Algorithm for Threat Data Integration of Multiple Sensor and selection of CounterMeasures (이기종 다중센서 위협데이터 통합 및 대응책 선정 알고리즘)

  • Go, Eun-Kyoung;Woo, Sang-Min;Jeong, Un-Seob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.474-481
    • /
    • 2011
  • The Electronic Warfare Computer for the Aircraft Survivability Equipment will improve the ability for countermeasures by analysis about threat information. This paper suggests method that threat data integration of multiple sensors(Radar Warning Receiver, Laser Warning Receiver, Missile Warning Receiver). The algorithm of threat data integration is based on detected threat sequence and azimuth information. The threat sequence information is analyzed in advance and the azimuth data is received from sensors. The suggested method is evaluated through simulation under the environment like real helicopter.

Development of the MEP Integration Test Environment for Surion (수리온 임무탑재체계의 통합시험 환경개발)

  • Kim, Yoo-Kyung;Kim, Myung-Chin;Choi, Won-Woo;Oh, Woo-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.666-673
    • /
    • 2011
  • To perform effective integration test of avionics equipments, the importance of a setup for integration test environment has been increasing in recently developed aircraft. Especially, the development of integration test equipment is necessary for minimizing the development period and reliability of integration test. This paper treats the model development for optimal working of integration test after analyzing the characteristics of each MEP equipments for Surion(KUH). Models, whose main role is troubleshooting of equipment and simulation for missing equipments, consists of dynamic, behavior, and ICD models depending on the dynamic characteristics. Software test for both unit level and system level are performed to verify the model reliability. By conducting integration test using SIL, it is confirmed that the developed models are suitable for integration function test of the MEP system.

Numerical analysis on two-dimensional vortex merger (이차원 와류 병합에 대한 수치적 연구)

  • Park, Sanghyun;Sheen, DongJin;Chang, Kyoungsik;Kwag, DongGi
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • During flight of the aircraft, the vortex merging phenomenon appears under the certain condition between co-rotating vortices which were generated at the wing tip and lifting-surface. And then these merged vortices at both sides show counter-rotating pattern to affect on the downstream of the aircraft. In this paper, the numerical simulations are conducted assuming this phenomenon in two-dimensional co-rotating or counter-rotating vortices pairs. Two-dimensional incompressible Navier-Stokes equations were converted into Vorticity-Streamfunction form and the Galerkin spectral method was adopted. The third order Runge-Kutta method was used for time integration. The effects on the vortex merger and degree of vortex merger were investigated according to time, Reynolds number, and changes in the distance between two vortices.

The Overview of the Design and Development Process of the Indigenous Korean Utility Helicopter (KUH) (한국형기동헬기(KUH) 설계개발과정 개관)

  • Yoon, Heekweon;Oh, Sangchul;Jeong, Sangwon;Yang, Junho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.29-32
    • /
    • 2008
  • The overview of KUH design and development process is presented according to Buede's systems and development "vee" model. The system decomposition and integration activities exemplify KUH specification tree, design maturity and analysis according to design stage(conceptual, preliminary, and detail design), scheduled work breakdown structure, qualification test, ground test, and flight test. This process can be applied to the development of a new aircraft.

  • PDF