• Title/Summary/Keyword: Aircraft Gas Turbine Engine

Search Result 71, Processing Time 0.032 seconds

Development of Variable Guide Vane Actuator System for Testing of Aircraft Gas Turbine Engine (항공용 가스터빈 리그시험용 가변정익 구동시스템 개발)

  • Kim, Sun Je;Jeong, Chi Hoon;Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Variable guide vanes(VGVs) that consist of link mechanisms and an actuator system are required for an aircraft gas turbine engine to adjust the incidence angle of stator vanes. In this study, we developed a VGV actuator system for three-stage VGVs with two hydraulic actuators. The requirements for the actuator system were derived by analyzing the link mechanisms and air loads, and a hydraulic power-pack was developed based on these requirements. Through a load test using the actuator test-rig and the application of synchronizing control logic with proper control gains, the actuator system could be developed and verified.

Experimental Research on the Performance of Air Turbine Starter for Gas Turbine Engines (가스터빈 엔진용 공기터빈 시동기 성능에 관한 실험적 연구)

  • Kim, Chun-Taek;Yang, In-Young;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2012
  • Gas turbines for an aircraft have the start and restart capabilities within their flight envelop. It is an important item for engine qualification and substantiated with the test. Experimental investigations were carried out to find the relation between the corrected torque and the corrected rotating speed of an air turbine starter in this study. A dedicated air supply system for the air turbine starter and a special device to measure the torque and the rotating speed of the air turbine starter were developed and installed at the altitude engine test facility in Korea Aerospace Research Institute. Experimental results show that the relations between the corrected torque and the corrected rotating speed of the air turbine starter are linear and the inlet temperature and pressure conditions for the air turbine starter were found out to provide minimum required torque for the engine qualification test at various altitude. The start and restart tests for the currently developing engine were successfully performed using this experimental results.

Effect of Sand and Dust Ingestion on Small Gas Turbine Engines (대기 중 모래 먼지 유입이 소형 가스터빈엔진에 미치는 영향에 대한 연구)

  • Rhee, Dong-Ho;Lim, Byeng-Jun;Ahn, Iee-Ki;Koo, Hyun-Chul;Kim, Jee-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.791-796
    • /
    • 2012
  • Small gas turbine engines are used in aircraft as an auxiliary power unit (APU) to supply compressed air to start the main engine and for emergency electricity. When an aircraft is operating in an environment in which sand and dust is present in the ambient air, the engines as well as the APU ingest the sand and dust. This causes erosion of the engine and a degradation in its performance. The present study investigated the effect of sand and dust ingestion on small gas turbine engines. The concentration of sand and dust was $4.4{\times}10^{-5}kg$ per unit kg of air, which follows the specification in MIL-E-8593. The test was conducted for 10 h, and the engine performance before and after the test was compared. In addition, a tear-down inspection was conducted to examine the erosion patterns of sub-components such as the impeller and turbine wheel.

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

A Study on Diagnostics of Complex Performance Deterioration of Aircraft Gas-Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 항공기용 가스터빈 엔진에 대한 복합 결함 진단에 대한 연구)

  • Kim, Seung-Min;Yong, Min-Chul;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.285-288
    • /
    • 2006
  • Genetic Algorithms(GA) which searches optimum solution using natural selection and the law of heredity has been applied to teaming algorithms in order to estimate performance deterioration of the aircraft gas turbine engine. The compressor, gas generation turbine and power turbine are considered for estimation for performance deterioration of a complex component at design point was conducted. As a result of that, complex defect diagnostics has been conducted. As a result, the accuracy of diagnostics were verified with its relative error with in 10% at each component.

  • PDF

The Outlook of Future Aeropropulsion System (미래 항공기 추진기관의 전망)

  • Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2009
  • The global restriction on pollutant emissions and the soaring of crude oil price are expected to result in the change of future transportation system. Hydrogen is considered to be the leading candidate as an alternative energy source before other new alternative energy sources emerge. Scientists anticipate that hydrogen fuel gas turbine engine and fuel cell will be the power plant of the aircraft in the near future. To realize the aircraft powered by fuel cell system in the future, the technologies such as fuel cell with higher energy density, compressed gas or liquid storage system of hydrogen fuel, and efficient and lightweight electric motor have to be developed first.

A Study on Defect Diagnostics of Gas-Turbine Engine on Off-Design Condition Using Genetic Algorithms (유전 알고리즘을 이용한 탈 설계 영역에서의 항공기용 가스터빈 엔진 결함 진단)

  • Yong, Min-Chul;Seo, Dong-Hyuck;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.60-67
    • /
    • 2008
  • In this study, the genetic algorithm has been used for the real-time defect diagnosis on the operation of the aircraft gas-turbine engine. The component elements of the gas-turbine engine for consideration of the performance deterioration consist of the compressor, the gas generation turbine and the power turbine. Compared to the on-design point, the teaming data has been increased 200 times in case off-design conditions for the altitude, the flight mach number and the fuel consumption. Therefore, enormous learning time has been required for the satisfied convergence. The optimal division has been proposed for learning time decrease as well as the high accuracy. As results, the RMS errors of the defect diagnosis using the genetic algorithm have been confirmed under 5 %.

A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine (항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

Life Evaluation of Gas Turbine Engine Disk based on Retirement for Cause Concept (Retirement For Cause 개념에 의한 가스터빈 디스크 수명의 평가)

  • Nam, Seung-Hun;Park, Jong-Hwa;Kim, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.365-373
    • /
    • 2002
  • For gas turbine engines, the safe life methodology has historically been used fur fatigue life management of failure critical engine components. The safe retirement limit is necessarily determined by a conservative life evaluation procedure, thereby many components which have a long residual life are discarded. The objective of this study is to introduce the damage tolerant design concept into the life management for aircraft engine component instead of conservative fatigue life methodology which has been used for both design and maintenance. Crack growth data were collected on a nickel base superalloy which have been subjected to combined static and cyclic loading at elevated temperatures. Stress analysis fur turbine disk was carried out. The program for computing creep-fatigue crack growth was developed. The residual lifes of turbine disk component under various temperatures and conditions using creep-fatigue crack growth data were estimated. As the result of analysis, it was confirmed that retirement fur cause concept was applicable to the evaluation of residual life of retired turbine disk which had been designed based on the conventional fatigue life methodology.