• 제목/요약/키워드: Air-water

검색결과 6,806건 처리시간 0.045초

A Numerical Study on the Reduction of Water Hammering in a Simple Water Supply Pipe System

  • Lim, Ki-Won;Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.51-61
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient pressure in a simple water supply pipe system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for validation in the study agree quite well with the previously reported. Several parameters are than varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^\circ{C}$ and 0.8m/s, respectively. Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

Experimental Investigation on Air-Distribution in a Water-Flowing through a G1-Rod Bundle with Helical Spacers

  • Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.79-86
    • /
    • 1978
  • 본 연구의 목적은 수직 연료봉 집합체에서 물-공기 2상 유동일 경우 공기분포현상에 관한 실험적 데이타를 얻는데 있다. test-section은 6각형, 61개의 연료봉 집합체로 구성되며, 각 연료봉은 helical spacers로 감겨져 있고, 사용되는 유체는 공기와 물이다. 실험은 크게 2부분으로 나누어서 물의 유량을 일정하게 하고 공기의 유량을 증가시킬 경우와 물자 공기의 유량을 동시에 증가시킬 경우의 공기분포현상에 관해 실시하였다. 공기는 4구멍을 통해 각각 주입시켰다. 보이드율의 측정은 전기적 Void-needle 방법을 적용하였으며 그 결과는 도표를 통해 보여주고 있다. 이 실험의 결과로써 물의 유랑을 증가시킬 수록 공기분포는 균일하게 되며, 공기 공급 위치는 공기분포에 큰 영향을 미치고 있음이 입증되었다.

  • PDF

유량조절이 가능한 사이펀 여수로 수리모형실험 (Hydrualic Model Test for Siphon Spillway Capable of Controlling Discharge)

  • 정재상;장은철;이창훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.43-47
    • /
    • 2019
  • 본 연구에서는 수리모형실험을 통해 사이펀 여수로에 장착된 air slot의 방류량 조절 능력을 검토하였다. air slot의 단면 형상으로 원호 및 직사각형 형상을 채택하였으며, 개구부 면적을 조절할 수 있게 하였다. air slot이 장착된 경우 사이펀 관 내부에 공기와 물이 혼합된 복잡한 흐름이 발생하였다. air slot이 장착된 사이펀 여수로에서 저수지 내측 수위가 상승할 때와 하강할 때 동일한 수위에서 동일한 유량이 계측되었다. air slot의 무차원 개구부 면적이 증가할수록 무차원 방류량은 더 서서히 증가하였다. 수리모형실험 결과는 air slot의 면적 조절을 통해 사이펀을 통한 방류량 조절이 가능함을 보여주었다.

  • PDF

가정에서의 수돗물 사용과 관련된 휘발성 염소소독부산물에 대한 흡입노출 평가 (Assessment of Inhalation Exposure to Volatile Disinfection By-products Associated with Household Uses of Chlorinated Tap Water)

  • 김희갑;김문숙;윤지현
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권2호
    • /
    • pp.125-133
    • /
    • 2002
  • Volatile disinfection by-products (DBPs) contained in chlorinated tap water are released into household air during indoor activities (showering, cooking, dish -washing, etc.) associated with tap water uses and may cause adverse health effects on humans. Twenty seven subjects were recruited and their homes were visited during the winter of 2002. Tap water, household air, and exhaled breath samples were collected and analyzed for five volatile DBPs (chloroform, bromodichloromethane, dichloroacetonitrile, 1,1 -dichloropropanone and 1,1,1 trichloropropanone). Chloroform was a major DBP found in most samples. Tap water chloroform concentrations were not statistically correlated with its household air concentrations, probably due to individual variability in indoor activities such as showering, cooking, and dish - washing as well as household ventilation. Correlation of breath chloroform concentration with household air chloroform concentration showed its possible use as a biomarker of exposure to household air chloroform. Exposure estimates suggested that inhalation during household stay be a major route of exposure to volatile DBPs and that ingestion of tap water be a trivial contributor to the total exposure in Koreans.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An experimental study on cooling characteristics of mist impinging jet on a flat plate)

  • 전상욱;정원석;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate)

  • 전상욱;정원석;이준식
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

지하철 역사 지하수를 이용한 에어와셔에 관한 연구 (Study on Air Washer using Underground Water in the Subway Stations)

  • 김동규;김회률;정용현;김종열;금종수
    • 수산해양교육연구
    • /
    • 제22권4호
    • /
    • pp.604-610
    • /
    • 2010
  • Busan subway transportation system has been established a key role in the society last 20 years. However many people are suffering from hot and humid environment at subway station and platform due to deteriorated ventilation system as well as insufficient air conditioning system in existing stations and platforms. As a result, these systems require revitalization. There is about 5400tons of low temperature underground water is generated from subway stations every day. By using this method and air washer we are trying to lower the temperature. Air washer is commonly used for removing humidity but in this experiment it will be used as air precooling. This research offers result of experiment using air washer system to lower the temperature in large spaces like subway station. The experiment result has shown when L/G was the same, at condition which water spray temperature at $18^{\circ}C$ resulting inlet and outlet temperature difference larger. Also, in the same water spray temperature conditions, larger L/G condition showed a greater temperature difference. LCC evaluation of both system were shown that air washer system of using underground water will save 53% of the initial cost than refrigeration system, and save 75% of operating cost.

급수배관계에서 에어 챔버의 설치효과에 관한 연구 (The Effect of Air Chamber Placed in Water Supply Piping System)

  • 이용화;최국광
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1047-1055
    • /
    • 2002
  • The present study is to investigate the pressure wave characteristics and the absorption of the maximum and minimum pressure generated by instantaneous valve closure and opening at the end of the straightening copper Piping system with and without an air chamber. Also, life of air chamber is investigated. Experiments were conducted under the following conditions: initial pressure of 1~5 bar, flow velocity of 0.5~3.0 m/s, water temperature of$20^{\circ}C$ and air chamber volume of 45.1~449.5$cm^3$ The results of the study can be used in sizing air chamber and selecting the water hammer absorbtion apparatus.

플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)- (Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System-)

  • 김용현;고학균;김문기
    • Journal of Biosystems Engineering
    • /
    • 제15권1호
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF