• Title/Summary/Keyword: Air-temperature difference

Search Result 1,303, Processing Time 0.025 seconds

Reflections of shocks in nonequilibrium flow of air

  • Park, Tae-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.767-781
    • /
    • 1995
  • In this paper we present computation of a reflected shock in the hypersonic flow of air with chemical reactions. We consider two dimensional steady inviscid hypersonic flow of air around bodies including chemical reaction effects. At a high Mach number, a strong shock is formed in front of the body when a wedge is placed against the flow. In front of the shock, temperature and pressure increase greatly and the flow is in nonequilibrium state. If the shock hits a wall, then a reflected shock is formed in the nonequilibrium flow region. Behind this reflected shock, the temperature and pressure are very high. We carry out the computation of the reflected shock and the flow behind it. The jump conditions at the reflected shock are presented. A technique combining smooth transforms of domain and implicit difference methods is used to overcome numerical difficulties associated with the lack of resolution behind the shock and near the body.

  • PDF

Experimental study of correlation between aqueous lithium chloride-air temperature difference and mass transfer performance

  • Fatkhur, Rokhmaw;Agung, Bakhtiar;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.195-198
    • /
    • 2011
  • Liquid desiccant material, such as lithium chloride (LiCl) or halide slits are usually used on air conditioning application for controlling the humidity of high Outdoor Air (OA). Solar energy is usually used to heat the liquid in regeneration process of those desiccant. The mass transfer it self is driven by the temperature different between the liquid desiccant and the input air. This experiment study is analyzing the characteristic of the aqueous LiCl-air temperature different in variance specific gravity, especially in range of temperature different using the solar energy as the heat generator. The experiment has done by variating the concentration of the LiCl with specific gravity 1.210 and 1.150. For the comparison the pure water is also used. The result show that the mass transfer rate is increased in every variation as the increases of the temperature different, and the weeker aqueous solution of the LiCl the highest mass transfer coefficient.

  • PDF

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

Optimal Conditions for Mist Sensing and Removal in Automobile (자동차 내부의 김서림 감지 및 제거를 위한 최적의 조건)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.763-769
    • /
    • 2012
  • For mist sensing, temperature-humidity sensor is attached on six positions of front glass and rearview mirror in automobile. Bottom-left side of front glass is the best position where mist is sensing. For mist removal, air conditioner is turned on intensity 1, 3 and is set the temperature at 17[$^{\circ}C$], 25[$^{\circ}C$]. And heater is turned on intensity 1, 3 and is set the temperature at 25[$^{\circ}C$], 32[$^{\circ}C$]. The best condition which mist is removed is temperature at 17[$^{\circ}C$] and intensity 3 of air conditioner mode. At this condition, total average value of humidity output voltage difference is 0.561[V]. Also, air conditioner mode is effective than heater mode for mist sensing and removal.

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

Comparison Study of Air Temperature by Green Condition and Relative Humidity (녹지 조건에 따른 기온 및 상대습도의 비교연구)

  • 윤용한
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.3
    • /
    • pp.111-118
    • /
    • 2001
  • We observed air temperature and relative humidity in the green space why this research graspes effect of climate relax by coverage condition and height difference tree in green space of the 4ha scale. With this data, analyzed relationship of coverage and air temperature or relative humidity distribution, number of tree and climate relax by revolution analysis. In this result, higher zone formed barren area, lower zone did forest and surround grassland. Relative humidity have corresponding type of air temperature distribution. higher air temperature zone was lower humidity and lower zone was higher humidity. Coverage condition effect climate relax by increasing forest and grassland. and increasing number of tree effect climate relax no related hight of tree. This efficiency order of an arbor, subarbor.

  • PDF