• Title/Summary/Keyword: Air-source heat pump system

Search Result 237, Processing Time 0.027 seconds

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

Design of Heat Pump System in Air Heat Source Type (공기열원 히트 펌프 시스템 설계)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.73-77
    • /
    • 2019
  • In this paper, the heat pump system was designed using heat absorption of the refrigerant or condensation heat. The cooperation system has been developed to pass a heat source of low temperature to a high temperature or to pass the heat source of high temperature to a low temperature. Heat pump for using the valve as a function of switching a condenser and an evaporator in a refrigerating cycle. As a result, heat pump system was developed by air source method. Therefore cooperating system for energy saving to solve at the same time as the cooling and heating by system of one was equipped.

Control of Heat Pump for Low Emission Diesel Engine (저공해 중소형 디젤차량 히트펌프 제어)

  • Park, Byung-Duck;Lee, Won-Suk;Won, Jong-Phil;Kwon, Sun-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 2002
  • As automotive diesel engines adopt the direct injection method for a lower level of the exhaust emission and a higher fuel efficiency, the maximum temperature of engine coolant decreases. Consequently, the total available heat source from the engine coolant decreases over 35%. However, the heating source of air-conditioning system in automobiles depends on the hot engine coolant completely, so that it is nearly impossible to control air conditioning in heating season. Therefore, the present study has been carried out to develop the air conditioning system for the high efficient heat pump type using the HFC-134a. Especially, the air conditioning system of heating has been developed at a beginning stage, when it has low heat source from small and medium sized diesel recreation vehicles. To develop a control logic system for air conditioning system which is a heat pump type with a heat recovery exchanger, its cycle characteristics has been investigated according to the opening of LEV at a bench system.

  • PDF

A Study on Cooling Characteristics of Ground Source Heat Pump with Variation of Water Switching and Refrigerant Switching Methods (수절환 및 냉매절환방식에 따른 지열히트펌프의 냉방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.605-611
    • /
    • 2012
  • The objective of this study is to investigate the influence of the cooling performance for a water-to-water 10 RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The cooling capacity and refrigerant mass flow rate of the heat pump increased with increasing ground heat source temperature. But COP of the heat pump decreased with increasing ground heat source temperature. As a result, the water switching method with counter flow, compared to a refrigerant switching method, improves the cooling capacity and COP by approximately 6~9% in average, respectively.

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

An Experimental Study on the Part-Load Performance of a River Water Source 2-Stage Heat Pump (하천수 열원 2단 압축 열펌프시스템의 부분부하 운전특성에 관한 실험적 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1964-1968
    • /
    • 2007
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. Although its better performance, the large temperature difference between load and source makes system performance worse by nature. In this study, 2-stage compression is considered as the solution of this problem. Generally, heat pump is designed for maximum capacity rate, but it actually operates at part load condition in many cases. Therefore, an information on the part-load character is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes. The experimental results show that the system performance is influenced by the part load rates, river water temperature, load temperature, etc.

  • PDF

An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation (에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

An Experimental Study of Ground Water Source Two Well Type Geothermal Heat Pump System (지하수 열원 복수정 지열 열펌프 시스템의 성능에 관한 실험적 연구)

  • Lim, Hyo-Jae;Kwon, Jeong-Tae;Kim, Chang-Eob;Kong, Hyoung-Jin;Park, Seong-Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2009
  • Ground water source heat pump system is the oldest one of the ground source heat pump systems. Despite of this, little formal design information has been available until recently. The important design parameters for open system are the identification of optimum ground water flow, heat exchanger selection and well pump. In this study, the capacity of 50 RT system of two well type ground water heat pump system was used. As a result, static water level was -7 m and the level during the heating operation was -32 m, cooling operation was -40 m. The initial static water level recovered within 48 hrs. The temperature of ground water is $15.6^{\circ}C$ for heating season and $16.2^{\circ}C$ for cooling season and does not depend on the outdoor temperature. Operation efficiency of the system shows that, COP 3.1 for heating and COP 4.2 for cooling.

An Experimental Study on Variable-Speed Control of an Ground-Water Circulation Pump for a Ground Source Multi-Heat Pump System (주거용 건물 지열원 멀티 히트펌프시스템의 지열순환펌프 가변유량제어에 관한 실증연구)

  • Song, Suwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.443-449
    • /
    • 2013
  • The purpose of this study is to propose an enhanced variable-speed control method of ground-water circulation pumps using inlet and outlet ground-water temperature difference and analyze its effect for the ground source multi-heat pump system installed in a single-family house. As a result, it has shown to significantly reduce the electricity use of ground-water circulation pump and improve overall system Coefficient of Performance (COP) due to the proposed variable-speed control under partial load conditions after oversized and inefficient single-speed pump retrofit.