• 제목/요약/키워드: Air-sea gas exchange

검색결과 4건 처리시간 0.02초

안면도에서 대기 중 가스상 PAHs의 계절적 변동 (Seasonal Variation of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) on Anmyeon Island)

  • 안준건;임운혁;심원준;김기범;김승규;이희일
    • Ocean and Polar Research
    • /
    • 제31권2호
    • /
    • pp.189-198
    • /
    • 2009
  • Passive air samplers with polyurethane foam (PUF) disks were employed to determine seasonal gas phase variation of polycyclic aromatic hydrocarbons (PAHs) in ambient air on Anmyeon island from March 2007 to January 2008. Sum of 13 PAHs ranged between $3.5\;ng/m^3$ and $27.6\;ng/m^3$. Total PAHs during the heating season was 6.2 times higher than non-heating season. The dominant PAHs components during sampling periods were low and middle molecular weight PAHs including phenanthrene, fluoranthene, pyrene and chrysene. Gas exchange fluxes of PAHs across the air-water interface of the Yellow Sea were calculated using a modified two-film exchange model. PAHs fluxes ranged from $196\;ng/m^2/d$ net volatilization during summer to $3830\;ng/m^2/d$ net absorption during winter. Passive air sampler provides a convenient and cost-effective tool for measuring averaged gas phase PAHs, which was successfully used for calculation of gas exchange flux of PAHs in the Yellow Sea.

Influence of Gas Transfer Velocity Parameterization on Air-Sea $CO_2$ Exchange in the East (Japan) Sea

  • Hahm, Do-Shik;Rhee, Tae-Siek;Kang, Dong-Jin;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • 제38권3호
    • /
    • pp.135-142
    • /
    • 2003
  • Gas flux across the air-sea interface is often determined by the product of gas transfer velocity k) and the difference of concentrations in water and air. k is primarily controlled by wind stress on the air-sea interface, thus all parameterizations ofk involve wind speed, a rough indicator of wind stress, as one of the independent variables. We attempted to explore the spatial and temporal variations of k in the East (Japan) Sea using a database from Naet al. (1992). Three different parameterizations were employed: those of Liss and Merlivat (1986), Wanninkhof(1992), and Wanninkhofand McGillis (1999). The strong non-linear dependence of k on wind speed in all parameterizations leads us to examine the effect of time resolution, in which the binned wind speeds are averaged, on the estimation ofk. Two time resolutions of 12 hours (short-term) and one month (long-term) were chosen. The mean wind speeds were fed into the given parameterizations, resulting in six different transfer velocities of $CO_2$ ranging from 12 to 32 cm/h. In addition to the threefold difference depending on the choice of parameterization, the long-term average of wind speed results in a value ofk up to 20% higher than the short-term (12 hours) average of wind speed due to the non-Rayleigh wind distribution in the East (Japan) Sea. While it is not known which parameterization is more reliable, this study proposes that the time-averaged wind speed should not be used in areas where non-Ralyleigh wind distribution prevails such as the East (Japan) Sea. The net annual $CO_2$ flux was estimated using the value of k described above and the monthly ${\Delta}fCO_2$ of Oh et al. (1999); this ranges from 0.034 to 0.11 Gt-C/yr.

해양 생물 펌프가 대기 중 이산화탄소에 미치는 영향 그리고 기후 변동과의 연관성 (The Impact of the Oceanic Biological Pump on Atmospheric CO2 and Its Link to Climate Change)

  • 권은영;조양기
    • 한국해양학회지:바다
    • /
    • 제18권4호
    • /
    • pp.266-276
    • /
    • 2013
  • 바다-육지-대기로 이루어진 기후 시스템에서 가장 큰 탄소의 저장고는 바다이다. 바다가 대기로부터 탄소를 흡수하는 주요 수단은 생물 활동에 의한 것으로서, 광합성에 의해 유기 물질로 동화된 탄소가 해저로 침강하고 분해되는 과정에서 깊은 바다물은 탄소를 축적하게 된다. 이러한 탄소 수송 작용을 생물 펌프라 부르며, 해수면 탄소 농도를 낮춤으로써 대기 중 이산화탄소 분압을 낮은 상태로 유지해주는 중요한 기작이다. 생물 펌프에 의해 해저에 축적된 탄소는 해양 순환에 의해 해수면에 돌아오고, 해양-대기 기체 교환에 의해 대기로 배출된다. 바다가 대기와 소통하는 이산화탄소의 양은 과거 빙하기-간빙기 기후 변동과 관련하여 과거 수십만년동안 대기 중 이산화탄소 분압변화에 주도적인 역할을 하여 온 것으로 알려져 있다. 본 논문에서는 바다에서 일어나는 탄소 순환을 간단하게 소개하고, 해양 순환의 변화가 어떻게 탄소 순환을 변형시키고, 대기 중 이산화탄소에 영향을 미치는지를 기후 변동의 관점에서 살펴보고자 한다.

초저온 냉각 트랩을 결합한 비활성기체 동위원소 희석 질량분석 시스템의 제작 (Development of a Noble Gas Isotope Dilution Mass Spectrometric System Combined with a Cryogenic Cold Trap)

  • 홍봉재;신동엽;박기홍;함도식
    • 한국해양학회지:바다
    • /
    • 제27권3호
    • /
    • pp.144-157
    • /
    • 2022
  • 비활성기체는 화학적, 생물학적 반응을 하지 않는 보존적인 특성을 가지고 있어 해양에서 수온과 염분 변화, 기체 주입, 해수의 혼합과 빙하 융해수의 분포와 같은 물리적인 변화의 추적자로 활용되고 있다. Ne, Ar과 Kr을 정밀하게 분석하기 위해 사중극자 질량 분석기, 고진공 전처리 라인, 초저온 냉각 트랩과 동위원소 표준기체로 구성된 분석 시스템을 제작했다. 고진공 라인은 시료의 용존 기체를 추출하여 동위원소 표준기체와 혼합하는 시료추출부, 합금 물질을 이용하여 반응성 기체를 제거하고 초저온 냉각 트랩으로 비활성기체를 기화점에 따라 분별 증류하는 기체 준비부, 비활성기체를 원소별로 측정하는 기체 측정부로 구성하였다. 기체준비부에 결합한 초저온 냉각 트랩은 질량분석기 내 Ar와 CO2의 부분압을 현저히 낮추어 Ne 동위원소 분석의 오차를 감소시켰다. 동위원소 표준기체는 22Ne, 36Ar과 86Kr를 혼합하여 제작하였고, 혼합 표준 기체의 원소별 양은 대기를 반복 측정하여 역동위원소 희석법으로 결정했다. 대기 평형수 반복 분석의 상대 오차는 Ne, Ar과 Kr에 대해 각각 0.7%, 0.7%, 0.4%이었다. 반복 측정한 대기 평형수의 농도와 포화 농도의 차이로 확인한 분석시스템의 정확도는 Ne, Ar, Kr에 대해 각각 0.5%, 1.0%, 1.7%이었다.