Browse > Article
http://dx.doi.org/10.7850/jkso.2013.18.4.266

The Impact of the Oceanic Biological Pump on Atmospheric CO2 and Its Link to Climate Change  

Kwon, Eun Young (Research Institute of Oceanography, Seoul National University)
Cho, Yang-Ki (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.18, no.4, 2013 , pp. 266-276 More about this Journal
Abstract
The ocean is the largest reservoir of carbon in the climate system. Atmospheric $CO_2$ is efficiently transferred to the deep ocean by a process called the biological carbon pump: photosynthetic fixation of $CO_2$ at the sea surface and remineralization of sinking organic carbon at depths are main causes for the vertical contrast of carbon in the ocean. The sequestered carbon to the deep ocean returns to the sea surface by ocean circulation. Part of the upwelled $CO_2$ leaks into the atmosphere through air-sea gas exchange. It has been suggested that the air-sea partitioning of carbon has varied in concert with the glacial-interglacial climate variations, due partly to changes in ocean circulation. In this review paper, we briefly summarize key concepts of the oceanic carbon pump. We also discuss the response of the air-sea carbon partitioning to change in ocean circulation in the context of the glacial-interglacial climate change.
Keywords
carbon cycle; ocean circulation; biological carbon pump; climate change; ocean biogeochemistry model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adkins, J.F., K. McIntyre and D.P. Schrag, 2002. The salinity, temperature, and ${\delta}^{18}O$ of the glacial deep ocean. Science, 298: 1769-1773.   DOI   ScienceOn
2 Anderson, R.F., S. Ali, L.I. Bradtmiller, S.H.H. Nielsen, M.Q. Fleisher, B.E. Anderson, L.H. Burckle, 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric $CO_2$. Science, 323: 1443-1448.   DOI   ScienceOn
3 Anderson, L.A. and J.L. Sarmiento, 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8: 65-80.   DOI   ScienceOn
4 Barnola, J.M., D. Raynaud, Y.S. Korotkecish, and C. Lorius, 1987. Vostok ice core provides 160,000 year record of atmospheric $CO_2$. Nature, 329: 408-414.   DOI   ScienceOn
5 Brewer, P.G., G.T.F. Wong, M.P. Bacon and D.W. Spencer, 1975. An oceanic calcium problem? Earth Planet. Sci. Lett., 26: 81-87.   DOI   ScienceOn
6 Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D.M. Karl, D.A. Siegel, M.W. Silver, D.K. Steinberg, J. Valdes, B.V. Mooy, S. Wilson, 2007. Revisiting carbon flux through the ocean's twilight zone. Science, 316: 567-570.   DOI   ScienceOn
7 Bouttes, N., D. Paillard and D.M. Roche, 2010. Impact of brine-indueced stratification on the glacial carbon cycle. Clim. Past, 6: 575-589, doi:10.5194/cp-6-575-2010.   DOI
8 Broecker, W.S. and T.-H. Peng, 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, pp. 690.
9 Broecker, W.S. and T.-H. Peng, 1992. Interhemispheric transport of carbon dioxide by ocean circulation. Nature, 356: 587-589, doi: 10.1038/356587a0.   DOI
10 Delmas, R. J., J.-M. Ascencio, and M. Legrand, 1980. Polar ice evidence that atmospheric $CO_2$ 20,000yr BP was 50% of present. Nature, 284: 155-157.   DOI
11 DeVries, T. and F. Primeau, 2009. Atmospheric $pCO_2$ sensitivity to the solubility pump: Role of the low-latitude ocean. Global Biogeochem. Cycles, 23, GB4020, doi:10.1029/2009GB003537.   DOI
12 Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson and B. Hales, 2008. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320: 1490-1492.   DOI   ScienceOn
13 Gildor, H. and E. Tziperman, 2001. Physical mechanisms behind biogeochemical glacial-interglacial $CO_2$ variations. Geophys. Res. Lett., 28: 2421-2424.   DOI   ScienceOn
14 Gong, D., and S. Wang, 1999. Definition of Antarctic Oscillation Index. Geophys. Res. Lett., 26: 459-462.   DOI   ScienceOn
15 Knox, F. and M.B. McElroy, 1984. Changes in atmospheric $CO_2$: Influence of the marine biota at high latitude. J. Geophys. Res., 89: 4629-4637.   DOI
16 Ito, T. and M.J. Follows, 2005. Preformed phosphate, soft tissue pump and atmospheric $CO_2$. J. Mar. Res., 63: 813-839.   DOI   ScienceOn
17 Jin, X., N. Gruber, J.P. Dunne, J.L. Sarmiento, and R.A. Armstrong, 2006. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, $CaCO_3$, and opal from global nutrient and alkalinity distributions. Global Biogeochem. Cycles, 20, GB2015, doi:10.1029/2005GB002532.   DOI   ScienceOn
18 Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy and T.-H. Peng, 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.   DOI   ScienceOn
19 Kwon, E.Y. and E. Galbraith, 2013. When the dust settles. Nature Geosci., 6: 423-424.   DOI   ScienceOn
20 Kwon, E.Y. and F. Primeau, 2006. Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in-situ phosphate data. Global Biogeochem. Cycles, 20, GB4009, doi:10.1029/2005GB002631.   DOI   ScienceOn
21 Le Quere, C., C. Rodenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, M. Heimann, 2007. Saturation of the Southern Ocean $CO_2$ sink due to recent climate change. Science, 316: 1735-1738.   DOI   ScienceOn
22 Kwon, E.Y. and F. Primeau, 2008. Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data. J. Geophys. Res., 113, C08011, doi:10.1029/2007JC004520.   DOI   ScienceOn
23 Kwon, E.Y., F. Primeau and J.L. Sarmiento, 2009. The impact of remineralization depth on the air-sea carbon balance. Nature Geosci., 2: 630-635.   DOI
24 Kwon, E.Y., J.L. Sarmiento, J.R. Toggweiler and T. DeVries, 2011. The control of atmospheric $pCO_2$ by ocean ventilation change: The effect of the oceanic storage of biogenic carbon. Global Biogeochem. Cycles, 25, GB3026, doi:10.1029/2011GB004059.   DOI
25 Marinov, I., M.J. Follows, A. Gnandesikan, J.L. Sarmiento and R.D. Slater, 2008. How does ocean biology affect atmospheric $pCO_2$? Theory and models. J. Geophys. Res., 113, C07032, doi:10.1029/2007JC004598.   DOI   ScienceOn
26 Marshall, G.J., 2003. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16: 4134-4143.   DOI
27 Martin, J.H., 1990. Glacial-interglacial $CO_2$ change: The iron hypothesis. Paleoceanography, 5: 1-13.   DOI
28 Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59: 661-677.   DOI   ScienceOn
29 Murnane, R, J.L Sarmiento and C. Le Quere, 1999. Spatial distribution of air-sea $CO_2$ fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochemical Cycles, 13: 287-305.   DOI
30 Moore, J. K., S. C. Doney and K. Lindsay, 2004. Upper ocean ecosystem dynamics and iron cycling in a global 3D model. Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220.   DOI   ScienceOn
31 Najjar, R.G., R.G. Najjar, X. Jin, F. Louanchi, O. Aumont, K. Caldeira, S.C. Doney, J.-C. Dutay, M. Follows, N. Gruber, F. Joos, K. Lindsay, E. Maier-Reimer, R.J. Matear, K. Matsumoto, P. Monfray, A. Mouchet, J.C. Orr, G.-K. Plattner, J.L. Sarmiento, R. Schlitzer, R.D. Slater, M.-F. Weirig, Y. Yamanaka, A. Yool, 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from phase II of the ocean carbon-cycle model intercomparison project (OCMIP-2). Global Biogeochem. Cycles, 21, GB3007.
32 Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. PEpin, C. Ritz, E. Saltzman and M. Stievenard, 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436.   DOI
33 Primeau, F., 2005. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr., 35: 545-564.   DOI   ScienceOn
34 Redfield, A.C., 1958. The biological control of chemical factors in the environment, American Scientist.
35 Sarmiento, J.L., J. Dunne, A. Gnanadesikan, R.M. Key, K. Matsumoto and R. Slater 2002. A new estimate of the $CaCO_3$ to organic carbon export ratio. Global Biogeochem. Cycles, 16, 1107, doi: 10.1029/2002GB001919.   DOI   ScienceOn
36 Sarmiento, J.L. and N. Gruber, 2006. Ocean Biogeochemical Dynamics. Princeton Univ. Press, Princeton, N. J.
37 Sigman, D.M. and E.A. Boyle, 2000. Gacial/interglacial variations in atmospheric carbon dioxide. Nature, 407: 859-869.   DOI   ScienceOn
38 Sarmiento, J.L., N. Gruber, M. Brzezinski and J.P. Dunne, 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427: 56-60.   DOI   ScienceOn
39 Sarmiento, J.L. and J.R. Toggweiler, 1984. A new model for the role of the oceans in determining atmospheric $pCO_2$. Nature, 308: 621-624.   DOI   ScienceOn
40 Siegenthaler, U. and T. Wenk, 1984. Rapid atmospheric $CO_2$ variations and ocean circulation. Nature, 308: 624-626.   DOI   ScienceOn
41 Skinner, L.C., S. Fallon, C. Waelbroeck, E. Michel and S. Barker, 2010. Ventilation of the deep Southern Ocean and deglacial $CO_2$ rise. Science, 328: 1147-1151.   DOI   ScienceOn
42 Takahashi, T., W.S. Broecker, S.R. Werner and A.E. Bainbridge, 1980. Carbonate chemistry of the surface waters of the world oceans, in Isotope Marine Chemistry, edited by E.D. Goldberg, Y. Horibe, and K. Saruhashi, Uchida Rokakuho Publ., Tokyo, pp. 291-326.
43 Thompson, D.W.J. and J.M. Wallace, 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim., 13: 1000-1016.   DOI   ScienceOn
44 Toggweiler, J.R., 1999. Variation of atmospheric $CO_2$ by ventilation of the ocean's deepest water. Paleoceanography, 14: 571-588.   DOI
45 Zeebe, R.E. and D.A. Wolf-Gladrow, $CO_2$ in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, 65, pp. 346, Amsterdam, 2001.
46 Toggweiler, J.R., J.L. Russell and S. Carson, 2006. Midlatitude westerlies, atmospheric $CO_2$, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.   DOI   ScienceOn
47 Volk, T. and M.I. Hoffert, 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric $CO_2$ changes, in The Carbon Cycle and Atmospheric $CO_2$: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, AGU, Washington, D.C., pp. 99-110.
48 Yamanaka, Y., and E. Tajika, 1996. The role of the vertical fluxes of particulate organic matter and calcite in the ocean carbon cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10(2): 361-382.   DOI   ScienceOn