DOI QR코드

DOI QR Code

The Impact of the Oceanic Biological Pump on Atmospheric CO2 and Its Link to Climate Change

해양 생물 펌프가 대기 중 이산화탄소에 미치는 영향 그리고 기후 변동과의 연관성

  • Kwon, Eun Young (Research Institute of Oceanography, Seoul National University) ;
  • Cho, Yang-Ki (School of Earth and Environmental Sciences, Seoul National University)
  • Received : 2013.06.24
  • Accepted : 2013.11.06
  • Published : 2013.11.28

Abstract

The ocean is the largest reservoir of carbon in the climate system. Atmospheric $CO_2$ is efficiently transferred to the deep ocean by a process called the biological carbon pump: photosynthetic fixation of $CO_2$ at the sea surface and remineralization of sinking organic carbon at depths are main causes for the vertical contrast of carbon in the ocean. The sequestered carbon to the deep ocean returns to the sea surface by ocean circulation. Part of the upwelled $CO_2$ leaks into the atmosphere through air-sea gas exchange. It has been suggested that the air-sea partitioning of carbon has varied in concert with the glacial-interglacial climate variations, due partly to changes in ocean circulation. In this review paper, we briefly summarize key concepts of the oceanic carbon pump. We also discuss the response of the air-sea carbon partitioning to change in ocean circulation in the context of the glacial-interglacial climate change.

바다-육지-대기로 이루어진 기후 시스템에서 가장 큰 탄소의 저장고는 바다이다. 바다가 대기로부터 탄소를 흡수하는 주요 수단은 생물 활동에 의한 것으로서, 광합성에 의해 유기 물질로 동화된 탄소가 해저로 침강하고 분해되는 과정에서 깊은 바다물은 탄소를 축적하게 된다. 이러한 탄소 수송 작용을 생물 펌프라 부르며, 해수면 탄소 농도를 낮춤으로써 대기 중 이산화탄소 분압을 낮은 상태로 유지해주는 중요한 기작이다. 생물 펌프에 의해 해저에 축적된 탄소는 해양 순환에 의해 해수면에 돌아오고, 해양-대기 기체 교환에 의해 대기로 배출된다. 바다가 대기와 소통하는 이산화탄소의 양은 과거 빙하기-간빙기 기후 변동과 관련하여 과거 수십만년동안 대기 중 이산화탄소 분압변화에 주도적인 역할을 하여 온 것으로 알려져 있다. 본 논문에서는 바다에서 일어나는 탄소 순환을 간단하게 소개하고, 해양 순환의 변화가 어떻게 탄소 순환을 변형시키고, 대기 중 이산화탄소에 영향을 미치는지를 기후 변동의 관점에서 살펴보고자 한다.

Keywords

References

  1. Adkins, J.F., K. McIntyre and D.P. Schrag, 2002. The salinity, temperature, and ${\delta}^{18}O$ of the glacial deep ocean. Science, 298: 1769-1773. https://doi.org/10.1126/science.1076252
  2. Anderson, R.F., S. Ali, L.I. Bradtmiller, S.H.H. Nielsen, M.Q. Fleisher, B.E. Anderson, L.H. Burckle, 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric $CO_2$. Science, 323: 1443-1448. https://doi.org/10.1126/science.1167441
  3. Anderson, L.A. and J.L. Sarmiento, 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8: 65-80. https://doi.org/10.1029/93GB03318
  4. Barnola, J.M., D. Raynaud, Y.S. Korotkecish, and C. Lorius, 1987. Vostok ice core provides 160,000 year record of atmospheric $CO_2$. Nature, 329: 408-414. https://doi.org/10.1038/329408a0
  5. Brewer, P.G., G.T.F. Wong, M.P. Bacon and D.W. Spencer, 1975. An oceanic calcium problem? Earth Planet. Sci. Lett., 26: 81-87. https://doi.org/10.1016/0012-821X(75)90179-X
  6. Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D.M. Karl, D.A. Siegel, M.W. Silver, D.K. Steinberg, J. Valdes, B.V. Mooy, S. Wilson, 2007. Revisiting carbon flux through the ocean's twilight zone. Science, 316: 567-570. https://doi.org/10.1126/science.1137959
  7. Bouttes, N., D. Paillard and D.M. Roche, 2010. Impact of brine-indueced stratification on the glacial carbon cycle. Clim. Past, 6: 575-589, doi:10.5194/cp-6-575-2010.
  8. Broecker, W.S. and T.-H. Peng, 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, pp. 690.
  9. Broecker, W.S. and T.-H. Peng, 1992. Interhemispheric transport of carbon dioxide by ocean circulation. Nature, 356: 587-589, doi: 10.1038/356587a0.
  10. Delmas, R. J., J.-M. Ascencio, and M. Legrand, 1980. Polar ice evidence that atmospheric $CO_2$ 20,000yr BP was 50% of present. Nature, 284: 155-157. https://doi.org/10.1038/284155a0
  11. DeVries, T. and F. Primeau, 2009. Atmospheric $pCO_2$ sensitivity to the solubility pump: Role of the low-latitude ocean. Global Biogeochem. Cycles, 23, GB4020, doi:10.1029/2009GB003537.
  12. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson and B. Hales, 2008. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320: 1490-1492. https://doi.org/10.1126/science.1155676
  13. Gildor, H. and E. Tziperman, 2001. Physical mechanisms behind biogeochemical glacial-interglacial $CO_2$ variations. Geophys. Res. Lett., 28: 2421-2424. https://doi.org/10.1029/2000GL012571
  14. Gong, D., and S. Wang, 1999. Definition of Antarctic Oscillation Index. Geophys. Res. Lett., 26: 459-462. https://doi.org/10.1029/1999GL900003
  15. Ito, T. and M.J. Follows, 2005. Preformed phosphate, soft tissue pump and atmospheric $CO_2$. J. Mar. Res., 63: 813-839. https://doi.org/10.1357/0022240054663231
  16. Jin, X., N. Gruber, J.P. Dunne, J.L. Sarmiento, and R.A. Armstrong, 2006. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, $CaCO_3$, and opal from global nutrient and alkalinity distributions. Global Biogeochem. Cycles, 20, GB2015, doi:10.1029/2005GB002532.
  17. Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy and T.-H. Peng, 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.
  18. Knox, F. and M.B. McElroy, 1984. Changes in atmospheric $CO_2$: Influence of the marine biota at high latitude. J. Geophys. Res., 89: 4629-4637. https://doi.org/10.1029/JD089iD03p04629
  19. Kwon, E.Y. and E. Galbraith, 2013. When the dust settles. Nature Geosci., 6: 423-424. https://doi.org/10.1038/ngeo1838
  20. Kwon, E.Y. and F. Primeau, 2006. Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in-situ phosphate data. Global Biogeochem. Cycles, 20, GB4009, doi:10.1029/2005GB002631.
  21. Kwon, E.Y. and F. Primeau, 2008. Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data. J. Geophys. Res., 113, C08011, doi:10.1029/2007JC004520.
  22. Kwon, E.Y., F. Primeau and J.L. Sarmiento, 2009. The impact of remineralization depth on the air-sea carbon balance. Nature Geosci., 2: 630-635. https://doi.org/10.1038/ngeo612
  23. Kwon, E.Y., J.L. Sarmiento, J.R. Toggweiler and T. DeVries, 2011. The control of atmospheric $pCO_2$ by ocean ventilation change: The effect of the oceanic storage of biogenic carbon. Global Biogeochem. Cycles, 25, GB3026, doi:10.1029/2011GB004059.
  24. Le Quere, C., C. Rodenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, M. Heimann, 2007. Saturation of the Southern Ocean $CO_2$ sink due to recent climate change. Science, 316: 1735-1738. https://doi.org/10.1126/science.1136188
  25. Marinov, I., M.J. Follows, A. Gnandesikan, J.L. Sarmiento and R.D. Slater, 2008. How does ocean biology affect atmospheric $pCO_2$? Theory and models. J. Geophys. Res., 113, C07032, doi:10.1029/2007JC004598.
  26. Marshall, G.J., 2003. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16: 4134-4143. https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
  27. Martin, J.H., 1990. Glacial-interglacial $CO_2$ change: The iron hypothesis. Paleoceanography, 5: 1-13. https://doi.org/10.1029/PA005i001p00001
  28. Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59: 661-677. https://doi.org/10.1016/0016-7037(94)00354-O
  29. Moore, J. K., S. C. Doney and K. Lindsay, 2004. Upper ocean ecosystem dynamics and iron cycling in a global 3D model. Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220.
  30. Murnane, R, J.L Sarmiento and C. Le Quere, 1999. Spatial distribution of air-sea $CO_2$ fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochemical Cycles, 13: 287-305. https://doi.org/10.1029/1998GB900009
  31. Najjar, R.G., R.G. Najjar, X. Jin, F. Louanchi, O. Aumont, K. Caldeira, S.C. Doney, J.-C. Dutay, M. Follows, N. Gruber, F. Joos, K. Lindsay, E. Maier-Reimer, R.J. Matear, K. Matsumoto, P. Monfray, A. Mouchet, J.C. Orr, G.-K. Plattner, J.L. Sarmiento, R. Schlitzer, R.D. Slater, M.-F. Weirig, Y. Yamanaka, A. Yool, 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from phase II of the ocean carbon-cycle model intercomparison project (OCMIP-2). Global Biogeochem. Cycles, 21, GB3007.
  32. Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. PEpin, C. Ritz, E. Saltzman and M. Stievenard, 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436. https://doi.org/10.1038/20859
  33. Primeau, F., 2005. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr., 35: 545-564. https://doi.org/10.1175/JPO2699.1
  34. Redfield, A.C., 1958. The biological control of chemical factors in the environment, American Scientist.
  35. Sarmiento, J.L., J. Dunne, A. Gnanadesikan, R.M. Key, K. Matsumoto and R. Slater 2002. A new estimate of the $CaCO_3$ to organic carbon export ratio. Global Biogeochem. Cycles, 16, 1107, doi: 10.1029/2002GB001919.
  36. Sarmiento, J.L. and N. Gruber, 2006. Ocean Biogeochemical Dynamics. Princeton Univ. Press, Princeton, N. J.
  37. Sarmiento, J.L., N. Gruber, M. Brzezinski and J.P. Dunne, 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427: 56-60. https://doi.org/10.1038/nature02127
  38. Sarmiento, J.L. and J.R. Toggweiler, 1984. A new model for the role of the oceans in determining atmospheric $pCO_2$. Nature, 308: 621-624. https://doi.org/10.1038/308621a0
  39. Siegenthaler, U. and T. Wenk, 1984. Rapid atmospheric $CO_2$ variations and ocean circulation. Nature, 308: 624-626. https://doi.org/10.1038/308624a0
  40. Sigman, D.M. and E.A. Boyle, 2000. Gacial/interglacial variations in atmospheric carbon dioxide. Nature, 407: 859-869. https://doi.org/10.1038/35038000
  41. Skinner, L.C., S. Fallon, C. Waelbroeck, E. Michel and S. Barker, 2010. Ventilation of the deep Southern Ocean and deglacial $CO_2$ rise. Science, 328: 1147-1151. https://doi.org/10.1126/science.1183627
  42. Takahashi, T., W.S. Broecker, S.R. Werner and A.E. Bainbridge, 1980. Carbonate chemistry of the surface waters of the world oceans, in Isotope Marine Chemistry, edited by E.D. Goldberg, Y. Horibe, and K. Saruhashi, Uchida Rokakuho Publ., Tokyo, pp. 291-326.
  43. Thompson, D.W.J. and J.M. Wallace, 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim., 13: 1000-1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
  44. Toggweiler, J.R., 1999. Variation of atmospheric $CO_2$ by ventilation of the ocean's deepest water. Paleoceanography, 14: 571-588. https://doi.org/10.1029/1999PA900033
  45. Toggweiler, J.R., J.L. Russell and S. Carson, 2006. Midlatitude westerlies, atmospheric $CO_2$, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.
  46. Volk, T. and M.I. Hoffert, 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric $CO_2$ changes, in The Carbon Cycle and Atmospheric $CO_2$: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, AGU, Washington, D.C., pp. 99-110.
  47. Yamanaka, Y., and E. Tajika, 1996. The role of the vertical fluxes of particulate organic matter and calcite in the ocean carbon cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10(2): 361-382. https://doi.org/10.1029/96GB00634
  48. Zeebe, R.E. and D.A. Wolf-Gladrow, $CO_2$ in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, 65, pp. 346, Amsterdam, 2001.