DOI QR코드

DOI QR Code

Development of a Noble Gas Isotope Dilution Mass Spectrometric System Combined with a Cryogenic Cold Trap

초저온 냉각 트랩을 결합한 비활성기체 동위원소 희석 질량분석 시스템의 제작

  • HONG, BONGJAE (Department of Oceanography, Pusan National University) ;
  • SHIN, DONGYOUB (Department of Oceanography, Pusan National University) ;
  • PARK, KEYHONG (Division of Ocean Sciences, Korea Polar Research Institute) ;
  • HAHM, DOSHIK (Department of Oceanography, Pusan National University)
  • Received : 2022.06.17
  • Accepted : 2022.08.05
  • Published : 2022.08.31

Abstract

Noble gases, which are chemically inert and behave conservatively in marine environments, have been used as tracers of physical processes such as air-sea gas exchange, mixing of water masses, and distribution of glacial meltwater in the ocean. For precise measurements of Ne, Ar, and Kr, we developed a mass spectrometric system consisting of a quadrupole mass spectrometer (QMS), a high vacuum preparation line, an activated charcoal cryogenic trap (ACC), and a set of isotope standard gases. The high vacuum line consists of three sections: (1) a sample extraction section that extracts the dissolved gases in the sample and mixes them with the standard gases, (2) a gas preparation section that removes reactive gases using getters and separates the noble gases according to their evaporation points with the ACC, and (3) a gas analysis section that measures concentrations of each noble gas. The ACC attached to the gas preparation section markedly lowered the partial pressures of Ar and CO2 in the QMS, which resulted in a reduced uncertainty of Ne isotope analysis. The isotope standard gases were prepared by mixing 22Ne, 36Ar, and 86Kr. The amounts of each element in the mixed standard gases were determined by the reverse isotope dilution method with repeated measurements of the atmosphere. The analytical system achieved precisions for Ne, Ar, and Kr concentrations of 0.7%, 0.7%, and 0.4%, respectively. The accuracies confirmed by the analyses of air-equilibrated water were 0.5%, 1.0%, and 1.7% for Ne, Ar, and Kr, respectively.

비활성기체는 화학적, 생물학적 반응을 하지 않는 보존적인 특성을 가지고 있어 해양에서 수온과 염분 변화, 기체 주입, 해수의 혼합과 빙하 융해수의 분포와 같은 물리적인 변화의 추적자로 활용되고 있다. Ne, Ar과 Kr을 정밀하게 분석하기 위해 사중극자 질량 분석기, 고진공 전처리 라인, 초저온 냉각 트랩과 동위원소 표준기체로 구성된 분석 시스템을 제작했다. 고진공 라인은 시료의 용존 기체를 추출하여 동위원소 표준기체와 혼합하는 시료추출부, 합금 물질을 이용하여 반응성 기체를 제거하고 초저온 냉각 트랩으로 비활성기체를 기화점에 따라 분별 증류하는 기체 준비부, 비활성기체를 원소별로 측정하는 기체 측정부로 구성하였다. 기체준비부에 결합한 초저온 냉각 트랩은 질량분석기 내 Ar와 CO2의 부분압을 현저히 낮추어 Ne 동위원소 분석의 오차를 감소시켰다. 동위원소 표준기체는 22Ne, 36Ar과 86Kr를 혼합하여 제작하였고, 혼합 표준 기체의 원소별 양은 대기를 반복 측정하여 역동위원소 희석법으로 결정했다. 대기 평형수 반복 분석의 상대 오차는 Ne, Ar과 Kr에 대해 각각 0.7%, 0.7%, 0.4%이었다. 반복 측정한 대기 평형수의 농도와 포화 농도의 차이로 확인한 분석시스템의 정확도는 Ne, Ar, Kr에 대해 각각 0.5%, 1.0%, 1.7%이었다.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부 재원으로 한국연구재단의 지원(NRF-2020R1A2C1009440)과 해양수산부 재원으로 극지 연구소의 지원(PE22110)을 받아 수행되었음.

References

  1. Glueckauf, E., 1951. The composition of atmospheric air. In Compendium of Meteorology, Springer, 3-10 pp.
  2. Guitton, J., F. Grand, L. Magat, M. Desage and A. Francina, 2002. Continuous flow isotope ratio mass spectrometry for the measurement of nanomole amounts of 13CO2 by a reverse isotope dilution method. Journal of mass spectrometry, 37(1): 108-114. https://doi.org/10.1002/jms.266
  3. Hamme, R.C. and S.R. Emerson, 2004a. Measurement of dissolved neon by isotope dilution using a quadrupole mass spectrometer. Marine chemistry, 91(1-4): 53-64. https://doi.org/10.1016/j.marchem.2004.05.001
  4. Hamme, R.C. and S.R. Emerson, 2004b. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 51(11): 1517-1528. https://doi.org/10.1016/j.dsr.2004.06.009
  5. Hamme, R.C., D.P. Nicholson, W.J. Jenkins and S.R. Emerson, 2019. Using noble gases to assess the ocean's carbon pumps. Annual Review of Marine Science, 11: 75-103. https://doi.org/10.1146/annurev-marine-121916-063604
  6. Kulongoski, J. and D. Hilton, 2002. A quadrupole-based mass spectrometric system for the determination of noble gas abundances in fluids. Geochem. Geophys. Geosyst, 3(6): 1. https://doi.org/10.1029/2001GC000267
  7. Lott, D.E. and W.J. Jenkins, 1984. An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Review of Scientific Instruments, 55: 1982-1988. https://doi.org/10.1063/1.1137692
  8. Lu, X. and S.R. Beaupre, 2019. Optimized volume determinations and uncertainties for accurate and precise manometry. Radiocarbon, 61(4): 1077-1089. https://doi.org/10.1017/RDC.2019.43
  9. Manning, C.C., R.H. Stanley and D.E. Lott III, 2016. Continuous measurements of dissolved Ne, Ar, Kr, and Xe ratios with a field-deployable gas equilibration mass spectrometer. Analytical chemistry, 88(6): 3040-3048. https://doi.org/10.1021/acs.analchem.5b03102
  10. Niedermann, S., T. Graf and K. Marti, 1993. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth and Planetary Science Letters, 118(1-4): 65-73. https://doi.org/10.1016/0012-821X(93)90159-7
  11. Ozima, M. and F.A. Podosek, 2002. Noble gas geochemistry. Cambridge University Press, UK.
  12. Postlethwaite, C.F., 2003. Developing a tool for evaluating the role of seasonal sea ice in deep-water formation. Ph.D. Thesis, University of Southampton, UK.
  13. Sano, Y. and N. Takahata, 2005. Measurement of noble gas solubility in seawater using a quadrupole mass spectrometer. Journal of Oceanography, 61: 465-473. https://doi.org/10.1007/s10872-005-0055-x
  14. Seltzer, A.M., F.J. Pavia, J. Ng and J.P. Severinghaus, 2019. Heavy noble gas isotopes as new constraints on the ventilation of the deep ocean. Geophysical Research Letters, 46(15): 8926-8932. https://doi.org/10.1029/2019GL084089
  15. Smith, S. and B. Kennedy, 1983. The solubility of noble gases in water and in NaCl brine. Geochimica et Cosmochimica Acta, 47(3): 503-515. https://doi.org/10.1016/0016-7037(83)90273-9
  16. Stanley, R.H.R. and W.J. Jenkins, 2013. Noble Gases in Seawater as Tracers for Physical and Biogeochemical Ocean Processes. In The Noble Gases as Geochemical Tracers, edited by Burnard, P., pages 55-79. Springer Berlin Heidelberg, Berlin, Heidelberg.
  17. Stanley, R.H.R., B. Baschek, D.E. Lott and W.J. Jenkins, 2009. A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem. Geophys. Geosyst, 10(5).
  18. Vogl, J. and W. Pritzkow, 2010. Isotope dilution mass spectrometry -A primary method of measurement and its role for RM certification. MAPAN, 25: 135-164. https://doi.org/10.1007/s12647-010-0017-7
  19. Weiss, R.F. and T.K. Kyser, 1978. Solubility of krypton in water and sea water. Journal of Chemical And Engineering Data, 23(1): 69-72. https://doi.org/10.1021/je60076a014
  20. Weiss, R.F., 1971. Solubility of helium and neon in water and seawater. Journal of Chemical & Engineering Data, 16(2): 235-241. https://doi.org/10.1021/je60049a019
  21. Young, C. and J. Lupton, 1983. An ultratight fluid sampling system using cold-welded copper tubing. Eos Trans. AGU, 64: 735.