• 제목/요약/키워드: Air-process

검색결과 4,664건 처리시간 0.039초

외기 전용 공조기의 동특성 시뮬레이션 (Dynamic Simulation of a Dedicated Outdoor Air-conditioning System)

  • 김정민;김영일;정광섭;박승태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

접착제 취급 작업장 내 공기정화 설비를 이용한 휘발성 유기화합물 저감 평가 (Assessment of Volatile Organic Compound Reduction Using an Air Purification Facility in an Adhesive Handling Process)

  • 우재민;김동준;신지훈;민기홍;이채관;양원호
    • 한국환경보건학회지
    • /
    • 제49권2호
    • /
    • pp.78-88
    • /
    • 2023
  • Background: Exposure to volatile organic compounds (VOCs) can have acute and chronic health effects on human beings in general and in working environments. In particular, VOCs are often emitted in large quantities in industrial settings. In such circumstances, there is a need to improve the indoor air quality at workplaces. Objectives: The purposes of this study were to verify the effectiveness of air cleaning devices in workplaces and provide alternative solutions for improving working environments. Methods: Personal exposure and area level of VOCs for workers were evaluated in a car-part adhesive process before and after installing an air cleaning device with a TiO2-coated filter. Passive samplers and direct reading instruments were used to collect and analyze the VOCs, and the removal efficiency and improvement of air quality were evaluated. We also calculated the exposure index (EI) to assess the risk level in the workplace. Results: The removal efficiency for VOCs through the installation of the air cleaning device was approximately 26.9~69.0% as determined by the concentration levels before and after installation. The measured substances did not exceed the exposure limits for the work environment and the EI was less than 1. However, carcinogenic substances such as benzene, formaldehyde, carbon tetrachloride, and trichloroethylene were detected. Conclusions: The application of an air cleaning device can be a solution for controlling the indoor air quality in a workplace, particularly in cases where ventilation systems cannot be installed due to process limitations.

심랭식공기분리공정에서 질소증류탑의 엑서지 해석 (Exergy Analysis of Nitrogen Distillation Column in the Cryogenic Air Separation Process)

  • 용평순;이성철
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.145-150
    • /
    • 2002
  • The distillation column is one of large energy consumable units in the cryogenic air separation process and the accurate energy analysis of this unit is necessary for choice of energy saving process. In this work, the energy method was adopted for energy analysis of a cryogenic nitrogen distillation column. In order to designing the energy saving distillation column, the exergy distribution of feed air, exergy efficiency and exergy loss for process condition was investigated and the optimal process condition to minimize the exergy loss was found. The result from this work can be used as a guideline for the choice of the process design conditions and efficiency improvement of cryogenic distillation column.

Fundamental study on sustainable treatment system of mine water using magnetized solid catalyst

  • Mukuta, Chisato;Akiyama, Yoko
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권2호
    • /
    • pp.15-21
    • /
    • 2019
  • In the mine exploration sites, sustainable treatment system of mine water with energy saving and minimized chemical additives is required. Since most of the mine water contains highly-concentrated ferrous ion, it is necessary to study on the removal method of iron ions. We propose the system consisting of two processes; precipitation process by air oxidation using solid catalyst-modified magnetite and separation process combining gravitational sedimentation and magnetic separation using a permanent magnet. Firstly, in the precipitation process (a former process of the system), we succeeded to prepare solid catalyst-modified magnetite. Air oxidation using solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material showed high iron removal capability. Secondly, in the separation process (latter process of the system), solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material can be separated by a superconducting bulk magnet and a permanent magnet.

마찰계수를 고려한 자동차용 에어컨 호스의 체결력에 관한 연구 (A Study on the Clamping Force of an Automotive Air-conditioning Hose according to the Friction Coefficient)

  • 백재권;김병탁
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.39-46
    • /
    • 2011
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. In case that the clamping force is small, the refrigerant gas in the hose can leak locally under the severe operating circumstances. The practical test of clamping force is performed by means of the measurement of separation force. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the clamping force. The contact condition is used in consideration of real manufacturing process, and the material properties for the Mooney-Rivlin model is obtained by the experimental results. The result interpretations are focused on the contact forces, which is displayed graphically with respect to friction coefficient, on the surfaces between the hose and the metal fittings.

코팅프로세스를 사용한 5,6-디하이드록시인돌의 산화 및 광에 대한 안정화 연구 (Study of Stabilizing 5,6-dihydroxyindole with Coating Process Against Oxidation and Light)

  • 한상근;이동규
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.518-527
    • /
    • 2013
  • 5,6-dihydroxyindole was easily oxidation with air and light Conditions. Availability of 5,6-dihydroxyindole was studied for hair dye as a precursor of melanin. This study used wet and dry coating process to stabilize 5,6-dihydroxyindole. In wet process used dimethicone and cyclometicone, the 5,6-dihydroxyindole had darkened through the drying process at $58^{\circ}C$. Wet coating process was inappropriate to stabilize the coating. In dry coating process, shea butter coating was stable until 3 days. Dextrin palmitate was most efficient ingredient to prevent oxidation by sun light and air until 7days. Oxidation test with 1.0% and 1.5% of dextrin palmitate was not different under conditions of sun light and air and was not dependent on contents. Vitamin E acetate under conditions of sun light and air, there were no significant effect in preventing oxidation.

마이크로파를 이용한 호박산 건조 특성 (Drying Characteristics of Succinic acid using the Microwave)

  • 김지선;류영복;김명환;홍성수;이만식
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.6023-6028
    • /
    • 2013
  • 최근 생분해성 고분자 수지의 수요가 증가함에 따라 그의 원료인 호박산의 수요도 증가하고 있다. 일반적으로 호박산은 화학적 공정인 수소화 반응으로 합성된다. 합성된 호박산은 일정량의 수분을 함유되고 있으며 이를 제거하기 위한 건조공정으로는 열풍건조가 일반적으로 사용된다. 그러나 최근 건조시간 단축과 제품의 균일한 건조가 가능하다는 장점을 가진 마이크로파 건조공정이 각광받고 있다. 따라서 본 연구에서는 건조공정에서 열풍건조와 마이크로파 건조 효율을 비교하였으며 마이크로파 건조 시 최적 조건을 찾아내어 가장 효율적인 호박산 건조 방법 및 운전조건을 확립하였다. 또한 호박산 건조공정에서 마이크로파건조의 상업적 적용가능성을 검토하였다. 실험결과 호박산 샘플의 두께가 1 cm일 때 마이크로파를 이용한 건조가 열풍건조보다 70%의 높은 효율을 확인하였다. 또한 마이크로파건조와 열풍건조 시 호박산의 완전건조까지 소비되는 전력량 검토를 통하여 경제적 효율성을 비교하였다.

LNG 냉열이용 액체수소 제조공정의 예냉 및 Cold box의 성능 개선 연구 (Performance Improvement of Precooling Process and Cold Box in Hydrogen Liquefaction Process Using LNG Cold Energy)

  • 윤상국;윤나은
    • 한국가스학회지
    • /
    • 제24권4호
    • /
    • pp.56-61
    • /
    • 2020
  • 수소의 액화에는 예냉 에너지, 상변화 에너지, 수소 변환열 제거 등 다량의 에너지가 요구되어진다. 본 논문의 목적은 예냉공정에 필요한 에너지로 LNG냉열로 액체질소를 제조하여 사용하는 LNG냉열 간접 이용 방식과, Cold box의 단열에 냉공기를 이용하는 새로운 에너지절약 공정을 제안하여 수소액화 수율을 향상시키고자 하였다. 분석 결과를 보면, LNG냉열 간접이용 방식은 에너지 절약과 함께 액체수소 플랜트의 안전성을 제공하는 장점을 갖는다. 새로운 Cold box 단열 방식은 외벽 철판 3mm/우레탄폼 20cm/공기 5cm/우레탄폼 20cm/설비의 구조일 때 현재 펄라이트 단열에 비교하여 열유입량이 약 35%~50%가 감소하게 된다. 또한 냉공기 보다 온도가 높은 설비는 냉각의 효과를 얻게 된다. 수소액화 플랜트의 공정에 본 결과를 적용한다면 액체 수율이 50% 내외로 크게 향상되는 효과를 제공하게 된다.

유전자 알고리즘을 이용한 타이어 공력소음의 저감 (Reduction of Air-pumping Noise based on a Genetic Algorithm)

  • 김의열;황성욱;김병현;이상권
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.61-73
    • /
    • 2012
  • The paper presents the novel approach to solve some problems occurred in application of the genetic algorithm to the determination of the optimal tire pattern sequence in order to reduce the tire air-pumping noise which is generated by the repeated compression and expansion of the air cavity between tire pattern and road surface. The genetic algorithm has been used to find the optimal tire pattern sequence having a low level of tire air-pumping noise using the image based air-pumping model. In the genetic algorithm used in the previous researches, there are some problems in the encoding structure and the selection of objective function. The paper proposed single encoding element with five integers, divergent objective function based on evolutionary process and the optimal evolutionary rate based on Shannon entropy to solve the problems. The results of the proposed genetic algorithm with evolutionary process are compared with those of the randomized algorithm without evolutionary process on the two-dimensional normal distribution. It is confirmed that the genetic algorithm is more effective to reduce the peak value of the predicted tire air-pumping noise and the consistency and cohesion of the obtained simulation results are also improved in terms of probability.

CFD분석을 통한 기류식 분쇄기 날개부의 최적설계 (Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics)

  • 김건회;김한빛
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.