• 제목/요약/키워드: Air-heating Collector

검색결과 101건 처리시간 0.022초

공기식 흡수기를 이용한 5kW급 접시형 태양열 집열기의 열성능 해석 (Thermal Performance of Air Receiver filled with Porous Material for $5kW_t$ Dish Solar Collector)

  • 서주현;마대성;김용;서태범;강용혁;이상남;한귀영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.570-575
    • /
    • 2007
  • The thermal performance of the air receiver filled with porous material for 5kWt dish solar collector installed in Inha University, Korea, is experimentally investigated. The diameter of the parabolic dish is 3.2 m, and its focal length is 2 m. It consists of 10 small pieces of glasses which have their own curvatures, and the effective reflecting area is 5.9 m2. The reflectivity of the glass is 0.95, and the thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. A quartz window is installed at the receiver aperture to minimize the convective heat loss and prevent air leakages. In order to increase the heat transfer area, porous material (nickel-alloy) is inserted into the receiver. Air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. The volumetric flow rates of air are varied from 600 to 1200 L/min. The thermal efficiency of the receiver ranges from 82% - 92% depending upon the flow rate. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected. These results from the experiment will be useful for the applications to air heating receivers and solar reactors.

  • PDF

밀폐형 유동층을 이용한 태양광 고온가스가열 장치의 연구 (High Temperature Solar Gas Heating by a Compact Fluidized-Bed Receiver of Closed-Type)

  • 최준섭
    • 태양에너지
    • /
    • 제12권1호
    • /
    • pp.88-94
    • /
    • 1992
  • 태양광 고온가스가열 장치를 위하여 후레넬렌즈면적 $0.5m^2$을 갖는 소형태양집열 및 추적시스템과 고급의 소형 밀폐형 유동층 태양광 수열기를 개발하였다. 개발된 태양광 수열기는 개방형 유동층의 단점인 SiC입자의 유출과 열사이폰효과를 개선하였다. 공기의 최대 도달온도는 1140K이며, 최대 열효율은 64%얻어졌다. 본 연구에서 개발한 태양광수열기는 기존의 평판이나 관형의 고체표면을 갖는 태양 집열기와 비교할 때 아주 고온에서 효율 좋게 작동된다.

  • PDF

흡열판에 돌출형 삼각 개구부가 설치된 가정용 태양열 공기가열기의 열성능에 대한 실험적 연구 (Experimental Study on the Thermal Performance of a Domestic Solar Air Heater with Protruding Triangular Openings on the Absorber Plate)

  • 김현곤;부준홍
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.41-51
    • /
    • 2016
  • A solar air heater was designed for supplementary domestic heating. The absorber plate had a series of protruding notches which had triangular openings on the front surface of the absorber plate to direct partial air flow to the rear surface and to enhance the convective heat transfer to the flowing air. The height of the opening as well as the opening configuration was determined by preceding numerical simulations. The experimental model had an absorber plate of 0.78-m width and 1.0-m length which was coated with black paint. The air temperature increased as much as $18^{\circ}C$ for $90-m^3/h$ flow rate when the absorber plate was inclined by $45^{\circ}$ for a clear-day solar irradiation of about $906W/m^2$. The collector efficiency ranged from 69 to 74%. Considering the simplicity of the structure and low manufacturing cost, the solar air heater might have competence as an auxiliary heating device for domestic use. On-site experimental results are presented with discussion for various solar irradiations and air flow conditions.

태양열 난방 시스템에 적용되는 축열조의 성층화에 관한 연구 (A Study on Thermally Stratied Hot Water Storage Tank in A Solar Heating System)

  • 홍희기;김효경
    • 대한설비공학회지:설비저널
    • /
    • 제15권1호
    • /
    • pp.87-96
    • /
    • 1986
  • An experiment on the devices that enchance the stratification of storage tanks in a solar heat ins system has been carried out. The benefits of thermal stratification in sensible heat storage are to increase the system performance such as the collector efficiency or the fraction of the total load supplied by solar energy. Using the diffuser and the distributor as the stratification enchancement device, the expeliments were perfomed in the different condition of diameter and material of the distributor. As a result of experiments, there exists the diameter of distributor in which the stratification is made maximum under certain design and operation condition. Also it was identified that the kind of distributor material influenced the degree of stratification. Comparing the experimental result to the computational results calculated under the same conditions, the node number N(stratification index) was determined. The results of computer simulation that was performed about the actual solar heating system in Seoul for 24 hours show the relative advantage of stratified over well-mixed storage and the significant improvements in system performance.

  • PDF

태양열 급탕시스템의 최적설계에 관한 연구 (A Study on Optimun Design of Solar Hot Water Heating System)

  • 이원태;서정일
    • 대한설비공학회지:설비저널
    • /
    • 제13권4호
    • /
    • pp.230-236
    • /
    • 1984
  • This paper presents a method for estimating the useful output of solar D.H.W. system. Heating load calculations, climate data and various conditions are used in this procedure to assess the fraction of the monthly solar energy and the actual solar energy supplied by solar energy for particular system. The design procedure presented in this paper referred to the f-Chart Method. The results of analyzing of this study by Fortran programming are as follows ; 1 . The amount of actual solar energy required to the hot water system is slowly rised to the ascend of tilt angle within the range of $45^{\circ}$, with is decreased since $45^{\circ}$. 2. The fraction of solar energy is superior when collector area is $8.64m^2$. 3. At the tilt angle with the range of $37.6^{\circ}\~45^{\circ}$, the amount of actual solar energy established the best results. 4 Both the fraction of solar energy and the actual solar energy are the most suitable during the storage volume is $300{\iota}$.

  • PDF

폐타이어 재 자원화를 위한 연구 (A Study on Recycling of Waste Tire)

  • 이석일
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.38-44
    • /
    • 2000
  • Compared to other waste, waste tire has much discharge quantity and calorie. When we use waste heat from waste tire, it can be definitely better substitute energy than coal and anthracite in high oil price age. To use as a basic data for providing low cost and highly effective heating system, following conclusion was founded. Annual waste tire production was 19,596 million in 1999, Recycling ratio was almost 55% and more than 8.78 million was stored. Waste tire has lower than 1.5% sulfur contain ratio which is resource of an pollution, So it is a waste fuel which can be combustion based on current exhaust standard value without any extra SOx exclusion materials. Waste tire has 9,256Kcal/kg calorific value and it is higher than waste rubber, waste rubber, waste energy as same as B-C oil. When primary and second air quantity was 1.6, 8.0 Nm$^3$/min, dry gas production time was 270min and total combustion time was 360 min. In the SOx, NOx, HC of air pollution material density were lower than exhaust standard value at the back of cyclone and dusty than exhaust standard value without dust collector.

  • PDF

진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템 (Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber)

  • 김창희;전동환;공상운;김종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

동적 시뮬레이션을 이용한 태양광열 시스템의 성능특성 분석 (Study on the Analysis Performance of PVT system using the Dynamic Simulation)

  • 김상열;남유진
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: A photovoltaic/thermal system is a solar collector combining photovoltaic module with a solar thermal collector, which produces electricity and heat at the same time. PVT system removes heat from PV module through air or liquid that would help to raise the efficiency of the PV systems performance. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. However, even though various of PVT system were developed and several systems were applied to practical use, there have been few researches for the performance analysis using the dynamic simulation. Method: In this study, the review of recent research and development trend for PVT systems were conducted. Furthermore, in order to develop the optimum design method, the performance analysis for PVT system was conducted by a dynamic simulation. Result: In the results, it was found that the performance of PVT system significantly depends on the ambient temperature and solar radiation. Moreover, in the weather condition of Seoul, average efficiency of electricity and heat in heating season were 13.79 and 41.85%, and they in cooling season were 14.39% and 26.18%, respectively.

태양열 집열관 과열방지를 위한 지중열교환기 연구 (A study of geothermal heat dump for solar collectors overheat protection)

  • 황현창;;이계복;이석호
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.616-622
    • /
    • 2016
  • 하절기 줄어드는 온수부하는 태양열 집열기 과열의 주된 원인이다. 과열방지목적으로 공냉 또는 차단막이 사용되는데 이는 추가적인 기계적요소를 필요하게 되고 장기 운용 시 파손 등의 우려에 따라 그 신뢰도도 크게 저하된다. 지중열교환기는 지열을 열원으로 방열 또는 흡열을 진행하는데, 지열을 고 열원으로 하여 흡열을 목적으로 하는 연구가 대다수이며 지열원이 저열원으로 이용하는 방열에 대한 연구는 부족한 편이다. 그리하여 본 연구에서는 태양열집열판의 과열방지를 목적으로 하는 지중열교환기의 가능성 및 그 성능에 대한 연구를 진행하였다. 여름철 최대 $150^{\circ}C$이상의 고온을 유지하는 태양열집열판의 열을 방출하기 위하여 1.2m의 하부 깊이를 갖는 50m 나선형 지중열교환기를 설치하였고 이를 통해 순간 냉각이 가능한 것으로 확인되었으며, 태양열집열판의 여름철 과열에 의한 파손을 방지할 수 있었다. 그리고 다양한 변수에 대한 이론적인 계산을 통하여 0.33kg/s의 최저 순환유량만 유지해주면 지열 열교환기의 길이에 따른 방열효과에 큰 영향을 미치지 않음을 판단할 수 있다. 또한 축열조와의 공동 사용시 냉각효과는 여름철 과열시 충분한 과열방지 제어가 가능한 것으로 조사되었다.

Full-scale EFC (Electric Fume Collector)를 활용한 텐타공정 배출가스 정화 및 오일 회수 (Full-scale EFC Study on Oil Recovery and Reuse from Discharge Gas of Tenter Facility in Textile Industry)

  • 황열순;박희재;정구회;김덕현;나병기
    • 청정기술
    • /
    • 제17권3호
    • /
    • pp.259-265
    • /
    • 2011
  • 섬유 염색 산업은 공장 주변의 주민들이 악취로 인하여 고통을 받고 있으며 반드시 해결해야할 대기오염 문제이며, 특히 텐타공정에서 발생하는 백연과 악취를 저감하여야 한다. 섬유 염색 산업의 주된 대기 오염물질은 탄화수소로 이루어진 유연제, 가소제, 발수제등을 사용하는 후처리 공정에서 주로 발생한다. 화학 물질이 처리된 섬유를 텐타공정에서 건조하는 동안 섬유에 포함된 오염물질들이 기화하여 대기로 배출된다. 백연은 주로 1 마이크론 미만의 작은 고상 혹은 액상물질로 이루어져 있으며, 텐타공정에서 발생된 오염물질 분자들이, 이들 입자에 붙어서 상당히 먼 거리까지 이동하며 악취를 유발하게 된다. 텐타공정의 악취를 줄이는 가장 효과적인 방법은 이러한 미세한 오일 미스트를 제거하는 것이다. 본 연구에서는 700 CMM의 Full-scale EFC (Electric Fume Collector) 운전을 통하여, 악취 및 백연이 효과적으로 제거되었으며 많은 양의 오일을 회수 할 수 있었다.