• 제목/요약/키워드: Air-fuel ratio control

검색결과 170건 처리시간 0.027초

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

공기다단 적용 석유코크스 연료 전용 연소기에 대한 실험적 연구 (An Experimental Study of Petroleum Cokes Air Staged Burner)

  • 권민준;이창엽;김세원
    • 한국연소학회지
    • /
    • 제20권2호
    • /
    • pp.40-45
    • /
    • 2015
  • This study is aimed to study combustion characteristics of low $NO_X$ burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and relatively low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. The petroleum cokes burner is operated at fuel rich condition, and overfire air are supplied to achieve fuel lean condition. The low $NO_X$ burner is designed to control fuel and air mixing to achieve air staged combustion, in addition secondary and tertiary air are supplied through swirler. Air distribution ratio of triple staged air are optimized experimentally. The result showed that $NO_X$ concentration is lowest when overfire air is used, and the burner function at a fuel rich condition.

LOW FUEL CONSUMPTION AND LOW EMISSIONS - ELECTROMECHANICAL VALVE TRAIN IN VEHICLE OPERATION

  • Pischinger, M.;Salber, W.;Staay, F.V.D.;Baumgarten, H.;Kemper, H.
    • International Journal of Automotive Technology
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 2000
  • The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle. "Late Exhaust Valve Open" (LEO) timing during the exhaust stroke leads to exhaust gas afterburning and, thereby, results in high exhaust gas temperatures and low HC emissions. Vehicle investigations have demonstrated an improved accuracy of the air-fuel-ratio during transient operation. Results in the New European Driving Cycle have confirmed a reduction in fuel consumption of more than 15% while meeting EURO IV emission limits.

  • PDF

솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용 (Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발 (Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas)

  • 신은주;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구 (Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine)

  • 조용석;안재원;박영준;김득상;이성욱
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

HCCI디젤엔진의 연소 및 배기 특성에 미치는 예혼합 연료와 EGR의 영향 (Effects of Premixed Fuel and EGR on the Combustion and Emissions Characteristics of HCCI Diesel Engine)

  • 윤영훈;김대식;이창식
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1006-1012
    • /
    • 2005
  • The effects of premixed fuels(diesel or n-heptane) and exhaust gas recirculation on combustion and exhaust emission characteristics in a DI diesel engine were experimentally investigated. To improve homogeneity of fuel-air mixture in the conventional diesel engine, the premixed fuel is injected by high pressure(5.5 MPa) into the premixing chamber prior to engine cylinder, And several additional systems such as an EGR system, air heating system and back pressure control system were equipped in the DI diesel engine. The results showed that premixed fuel-air mixture undergoes typical HCCI combustion prior to the combustion of DI diesel fuel. The ignition timing of HCCI combustion is delayed by application of EGR, and it also shows that HCCI combustion can be controlled by an EGR.

Adaptive Model Predictive Control for SI Engines Fuel Injection System

  • Gu, Qichen;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권3호
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a model predictive control (MPC) based on a neural network (NN) model for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN model can cope with system uncertainty and time varying effects. A single dimensional optimization algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness of the developed method.

일사량 감응 및 관수공급이 가능한 연소형 CO2 발생기 통합 제어시스템의 설계 (Design of Integrated Control System for Combustion Type CO2 Generator with Solar Radiation Sensitiveness and Irrigation Supply)

  • 김응곤
    • 한국전자통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.617-622
    • /
    • 2018
  • 시설원예 하우스 내부의 공기 밀폐나 유동상태에 직접적인 영향을 주는 송풍기, 측창 개폐기의 동시제어는 $CO_2$ 농도 관리에 필수적이다. 현재 농업인구 감소에 따른 개인당 경작면적 증가로 자동화 시스템과 통합제어의 요구가 꾸준히 증가하고 있는 실정이다. 본 논문에서는 $CO_2$발생기의 연료 및 연소공기 혼합비(공연비), 내 외부 환경에 따른 $CO_2$ 공급량의 제어와 $CO_2$ 공급에 있어 중요한 변수인 측정 개폐기와 같은 기존 설치기기를 동시에 제어할 수 있는 통합 제어시스템을 제안한다.

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF