• Title/Summary/Keyword: Air-Water Interface

Search Result 282, Processing Time 0.023 seconds

A study on mechanical properties of friction weld interface in metal bearing (Metal Bearing 마찰용접면의 기계적 성질에 관한 연구)

  • 오세욱;이영호;민택기
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.20-26
    • /
    • 1990
  • In this study, to make research on its optimum condition in friction weld when the heating pressure is change during 1.6 to 3.0 $kgf/mm^2$, the experiment was performed with metal bearing under various condition; 1600 r.p.m spindile speed, 0.6 $kgf/mm^2$ preheating pressure, upset pressure 2.6 $kgf/mm^2$, 0.5 seconds preheating time, 1.7 seconds heating time, water and air was ejected 6 $kgf/mm^2$ into the bushing. On the basis of the experimental results, the following conclusion are drawn; 1) At the area of weld interface, the heardness is shown the maximum value and heat-affected zone about 0.5mm both sides. 2) Bending strength is shown the optimum heating pressure 2.4 kgf/mm. 3) With the approach of the flash, Sn is increased only 2 mm in A-alloy structure.

  • PDF

Molecular Interfacial Control and Molecular Morphology Properties of Functionalized Dendrimer Organic Monolayers (기능성 덴드리머 유기단분자막의 분자계면제어 및 분자모폴로지 특성)

  • Shin, Hoon-Kyu;Kim, Doo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.365-366
    • /
    • 2007
  • The dendrimer has been well known as a promising macromolecules for a building the organized nanostructure, which of the size can be controlled and which of periphery can be terminated by various functionalities. Currently a variety of research is being carried out in the field of dendrimer / polymer characterization, nano-scale atomic manipulation, and supramolecular nanostructure analysis. We investigated monolayer behavior and its characteristics at the air-water interface by LB method. In this report, we will present the interfacial properties of dendrimer monolayers on various conditions such as the surface-pressure, barrier speed and spreading quantity.

  • PDF

A Fiber Optic Sensor for Measurements of Solute Concentration in Fluids

  • Kim, Chang-Bong;Su, C.B.
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.102-105
    • /
    • 2003
  • A new and simple calibration technique that greatly enhances the measurement sensitivity of conventional fiber-optic reflectometry based on Fresnel reflection from the tip of a fiber is used for demonstrating the feasibility of measuring solute concentrations and index changes in fluids to very high precision. The amplitude of pulses originating from reflection from the fiber-fluid interface is compared in real-time with the amplitude of reference pulses from a fiber-air interface such that errors caused by pulse amplitude fluctuations and slightly varying detector responses are corrected. Using solutions of salt and water, it is demonstrated that the technique is capable of measuring index changes of about $1 {\times} 10^{-5}$ corresponding to a salt concentrations of 0.01 %.

Free-Standing Langmuir-Blodgett Films of Maleic Acid-Vinyl Ether Copolymers across 1 μm Pores

  • 이범종;최기선;권영수
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1167-1172
    • /
    • 1995
  • A coverage of about 1 μm-sized pores of a membrane filter by four monolayers of maleic acids copolymers and poly(allylamine) (PAA) was attained by Langmuir-Blodgett (LB) technique through a covalent cross-linking followed a polyion complexation at the air-water interface. The copolymers were prepared to have side chains of hydrocarbon tail, carboxyl, and/or oligoether in the repeat unit. The surface pressure-area isotherms showed that the monolayers on an aqueous PAA have more expanded area than on pure water. The monolayers were transferable on a calcium fluoride substrate and a fluorocarbon membrane filter as Y deposition type, and the resulting LB films were characterized by FT-IR spectroscopy and scanning electron microscopy. A polymer network produced through interchain amide formation was confirmed in as-deposited films. The films were heat-treated in order to complete the cross-linking. SEM observation of the heat-treated film on a porous membrane filter showed that the four layer film was sufficiently stable to cover the filter pore of about 1 μm. Immersion of the film in water or in chloroform did not cause any change in its appearance on SEM and in FT-IR spectra.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

Extent and persistence of dissolved oxygen enhancement using nanobubbles

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.427-435
    • /
    • 2016
  • In this study, change in water-dissolved oxygen (DO) was analyzed under various synthetic water qualities and nanobubbles (NBs) application conditions, such as gas type, initial DO as well as water dissolved, suspended and organic matters contents. When oxygen, rather than air, was introduced into nitrogen-desorbed ultra-pure water, the stagnation time was significantly increased. It took ten days for DO concentration to drop back to saturation. The higher the initial DO concentration, the longer particles were observed above saturation due to particle stability improvement. The oxygen mass transfer rate of 0.0482 mg/L/min was found to reach a maximum at an electrolytic concentration of 0.75 g/L, beyond which the transfer rate decreased due to adsorption of negative ions of the electrolyte at the interface. High levels of turbidity caused by suspended solids have become a barrier to dissolution of NBs oxygen into the water solution, and thus affected the transfer performance. On the other hand, by applying NBs for just an hour, up to 7.2% degradation of glucose as representative organic matter was achieved. Thus, NBs technology would maintain a high DO extent for an extended duration, and thus can improve water quality provided that water chemistry is closely monitored during its application.

Interaction of a Pyridyl-Terminated Carbosiloxane Dendrimer with Metal Ions at the Air-Water Interface

  • Lee, Burm-Jong;Kim, Seong-Hoon;Kim, Chung-kyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.216-219
    • /
    • 2003
  • A new class of carbosiloxane dendrimer (G4-48PyP) terminated with 4-pyridylpropano I was synthesized and its possible application to functional thin films was examined through metal complexation and Langmuir-Blodgett (LB) technique. The highly concentrated periphery pyridyl groups of G4-48PyP were exposed on aq. aluminum ions at the air-water interface. The monolayers showed stability up to ca. 50 mN/m of surface pressure. When the subphase became acidic or alkaline, the monolayers changed to condensed phase. The presence of aluminum ions also caused reduction of the molecular area. The macroscopic images of the monolayers were monitored by Brewster angle microscopy (BAM) and only the images of dendrimer aggregates could be observed after the monolayer collapse. The surface images of the monolayer LB film were scanned by atomic force microscopy (AFM). The convex structures of single and aggregate molecules were directly observed. The structures of Langmuir-Blodgett (LB) films were characterized by FT-IR, UV-Vis, and X-ray photoelectron spectroscopy (XPS). The UV-Vis spectrum of the aluminum ion-complexed LB film showed additional band around 670nm, which was not found in the spectra of dendrimer itself or aq. aluminum ions. XPS spectra also supported the incorporation of aluminum ions into the LB films.

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.201-205
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Electrical Properties by different method of metal complex of G4-48PyP Dendrimer (금속이온 착체방법에 의한 G4-48PyP 덴드리머의 전기적 특성)

  • Kim, S.U.;Jung, S.B.;Kim, C.;Park, J.C.;Chang, J.S.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1532-1534
    • /
    • 2003
  • We attempted to fabricate a dendrimer Langmuir-Blodgett(LB) films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. In this study the samples for electrical measurement were fabricated to two types metal complexes with $Pt^{4+}$ ions by LB method. And we have investigated the surface activity at the air-water interface as well as the electrical properties for the monolayers of G4-48PyP dendrimer complex with metal ions($Pt^{4+}$ ions) by different method. In the surface pressure-area(${\pi}$-A) isotherms of the dendrimers, the stable condensed films formed at the air-water interface and the different method of metal complex showed the difference on molecular behavior. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage (I-V) characteristics of metal/dendrimer LB films/metal(MIM) structure. In conclusion, it is demonstrated that the metal ion around G4-48PyP dendrimer can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties.

  • PDF

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.201-201
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.