• 제목/요약/키워드: Air permeability and thermal properties

검색결과 47건 처리시간 0.022초

여고생 하복의 착용만족도 및 하복용 직물의 쾌적성 평가 (The Wearing Satisfaction and Comfort-Related Properties of Highschool Girls' Summer Uniforms and The Fabrics)

  • 최종명;김희숙
    • 대한가정학회지
    • /
    • 제38권11호
    • /
    • pp.105-114
    • /
    • 2000
  • The purpose of this study was to investigate the wearing satisfaction of highschool girls’summer uniforms, and to evaluate the comfort-related properties of fabrics used in the uniforms. The subjects were 441 female high school students attending three different schools in Chongju city. The data was collected using self-administered questionnaires to measure the wearing satisfaction of summer school uniforms. Factor analysis, t-test, and F-test were used for data analysis. The heat and moisture transfer properties and air permeable properties of their fabrics were evaluated to measure as comfort-related properties. 1. Most students were wearing blouses made of polyester/rayon blended fabrics and skirts made of 50% wool and 50% polyester blended fabrics. 2. Clothing care and management, and appearance of summer school uniform were assessed positively, while style and design, and the level of comfort were assessed negatively. 3. The subfactors of wearing satisfaction varied according to school, style and design, and fabrics of high school girls’summer uniforms. 4. PET fabrics were rated as having a lower value of thermal retention and a higher value of air permeability than other blouse fabrics. 5. There were not differences significantly in thermal properties according to skirt materials.

  • PDF

청바지의 소재별 쾌적감에 관한 연구 (Comport Sensation of Blue Jeans depending on Fiber Contents)

  • 홍문경;이미식;권계화;전정애
    • 한국의류학회지
    • /
    • 제25권2호
    • /
    • pp.237-248
    • /
    • 2001
  • The purpose of this study was to compare the comfort sensation depending on four different kinds of denim blue jeans: cotton, cotton/tencel, tencel, cotton/pp. The objective and subjective experiments were conducted to measure the comfort of blue jeans. To investigate the objective comfort, physical properties related to thermal insulation, moisture properties and hand were measured. For subjective comfort measurement, 5 healthy female college students were taken as subjects. The outcomes of the experiments are as follows: The higher the air permeability and bulk density of the denim, the lower the thermal insulation, the thicker the denim, the higher the thermal insulation. Tencel blending denim showed the higher bulk density, the lower air contents, and consequently the lower thermal insulation than the other denims. Tencel showed the highest moisture regain, and cotton/tencel blend showed the highest water vapor permeability. Tencel denim had relatively better flexibility, shape stability and elastic recovery than the other denims. The total hand values of the denims by KES-FB system were not significantly different. Cotton and cotton/pp denims raised the subjects body temperature after excercise more than tencel or cotton/tencel denims. Average skin temperature was found to have a correlation with micro climate temperature and micro climate humidity. The correlation coefficients were 0.749 and 0.767, respectively. However, average skin temperatures were not significantly different among the materials. Pulse rate was found to be the highest when wearing cotton/pp and the lowest in case of cotton/tencel denim. The energy was consumed in order of cotton>cotton/pp>tencel>cotton/tencel. There was no significant difference in preference before excercise, but, after the excercise, the order of preference changed as the following; cotton/tencel>tencel>cotton/pp>cotton.

  • PDF

중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향 (Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment)

  • 김현아;김영수;김승진
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.

고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구 (Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics)

  • 김지연;김훈민;민문홍
    • 한국염색가공학회지
    • /
    • 제32권3호
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.

서열환경하에서의 전투복착용이 체온조절에 미치는 영향 (The Influence of Wearing Army Combat Uniform on the Thermal Responses in Heat Environment)

  • 김태규;조호현
    • 한국의류산업학회지
    • /
    • 제16권1호
    • /
    • pp.167-174
    • /
    • 2014
  • The physical properties of textile materials and thermal physiological responses of the human subjects were evaluated with 4 different types of the army combat uniforms including US, German, Korean and general uniforms for this study. 8 male adults were used as the human subjects and the tests were done in the environmental chamber that was $25{\pm}0.1^{\circ}C$ of temperature, $65{\pm}5%$ of relative humidity and below 0.3 m/sec of air velocity. The test protocol consisted the rest period for 20 min., the exercise period for 20 min., the rest period for 20 min., the exercise period under wind condition for 20 min., and the recovery period for 20 min. The human subjects walked with 4.5 km/hr for 10 min., ran 7.5 km/hr for 10 min. during the first exercise period and walked and ran with the same speeds under 3.5 m/sec of the air velocity that simulated outdoor condition during the second exercise period. The test results of the study were as follows; The wind condition affected the skin and microclimate temperature of the human subjects lower compared to without wind condition, but had insignificant effect on the humidity control. The low air permeability of Korean uniform caused blocking the elimination of the humidity from the body and the regulation of body temperature. However, Korean uniforms could be the excellent one with the designs considering the ventilation of the uniforms and the textile fabrics with better air permeability.

PET직물의 감량율과 직물구조인자에 따른 열적 쾌적성 변화에 관한 연구 (A Study on the Thermal Comfort to the Weight Reduction Rate and Fabric Structural Parameters of PET Fabrics)

  • 이희준;이민수;김승진;조대현;김태훈
    • 한국의류학회지
    • /
    • 제22권7호
    • /
    • pp.816-825
    • /
    • 1998
  • This study surveys the thermal property and air permeability to the weight reduction rate of PET fabrics. For this purpose, 12 kinds of satin and 18 kinds of plain weave fabrics are prepared with change of the physical properties such as weft yarn count, t.p.m. and density. The weight reduction rate was 0%, 12%, 25% and 30%. The warm/cool feeling(Qmax), thermal insulating value(T.I.V.) and thermal conductivity(K) were measured by KES-F7 System and discussed in relation with the weight reduction rate, weft yarn linear density, t.p.m., weft density of fabric and weave structure.

  • PDF

벨벳과 안감의 소재 조합에 따른 의복의 열저항에 관한 연구 (Thermal Properties on combination of Velvet and Lining)

  • 계명대학교의류학과;이욱자;류덕환
    • 한국의류학회지
    • /
    • 제23권1호
    • /
    • pp.3-13
    • /
    • 1999
  • This study was performed for purpose of getting fundamental information requisite to wear velvet clothes that is more comfortable for the human body and also the environment. It was carried out in a human wearing test and thermal manikin test at the same time in a controlled-condition chamber. The experimental environment had a ambient temperature of 15$\pm$0.5$^{\circ}C$ with the relative humidity at 5$^{\circ}C$$\pm$5% and with air velocity at less that than 0.2m/sec. Velvet differ from common plain weaves in thermal properties because it's constructed in two parts one is ground part and the other part is pile part. In order to investigate the thermal resistance of velvet eight different combination of 4 velvet kinds and 2 lings kinds as experimental clothes. [(4 velvet kinds : Acetate cuprammoium Rayon Cotton Wool) (2 lining kinds : acetate viscose rayon)longrightarrow8 combination: Aa, Av, Ra, Rv, Ca, Cv, Wa, Wv: the simplified character] The results of this study can be summarized as follows : 1. For the regional thermal resistance the differences in eight clothes as well as differences in each part were significant. As a whole the breast part showed the highest thermal resistance and the leg part was higher than the shank part. The rank of the total thermal resistance was put at Wa>Wv>Ca>Cv>Aa>Av>Ra>Rv in this order. 2. Considered clothing microclimate microclimate temperature has a similar tendency to the total thermal resistance. It showed a significance in the differences of eight clothes and each parts. the belly part was highest in every combination. On the other hand for clothing humidity there was a significance between back and breast part only in the human wearing test. 3. It was indicated that CLO value was highly positively correlated with the clothings' weight and showed a high negative correlation with the air permeability.

  • PDF

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • 제14권1호
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

기모가공 조건에 따른 트리코 기포 인조 스웨이드의 태와 물성 (Subjective Hand and Physical Properties of Tricot based Artificial Suede according to Raising Finish)

  • 노의경;오경화
    • 한국의류산업학회지
    • /
    • 제16권1호
    • /
    • pp.153-159
    • /
    • 2014
  • This study evaluates the changes of the subjective hand, preference, comfort and mechanical properties of tricot based artificial suede made from sea-island type micro fibers according to raising condition. The subjective hand and the preference of raised suede for jacket were rated by the 20's and 30's women experts according to raising cycles. Comfort properties were evaluated by air permeability, water vapor transmission, and thermal transmission. Mechanical properties were measured by the KES-FB system. The subjective hand of artificial suede was categorized into three hand factors: smoothness, warmness and thickness. Smoothness, warmness and thickness perception increased with raising cycles which affected hand preference and luxuriousness perception. The thickness and wale density of suede increased with the number of raising. Suede became more compact and less pliable and less stretchable due to increased fabric thickness; in addition, the surface of suede became smoother and compressive since the surface evenness of suede improved with smaller fiber fineness and an increased amount of naps covered the base fabric. Furthermore, water vapor transmission decreased and thermal insulation increased. The best raising conditions for artificial suede was four cycles in which artificial suede was preferred without changes in physical properties.

비대칭 Polysulfone계(PS/PES/PPS)막 제조시 물리적 인자의 영향 및 기체투과 특성 (Physical Properties and Permeation Characteristics of Polysulfone group(PS/PES/PPS) membrane for Gas Permeation)

  • 박영해
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.77-85
    • /
    • 2001
  • This paper was to investigate the preparation of polysulfone(PS), polyethersulfone(PES) and polyphenylsulfone(PPS) membrane. The thermal property of PPS was higher than that of others. From the result of SEM, the concentration of polymer was found to have a significant effect on the structure of membrane, and the structure of membrane made of PES is found to have regular micell form of asymmetry. Permeability and selectivity for oxygen and nitrogen gas in the air were analyzed by GC. Permeabilities of the membrane made of PES for oxygen and nitrogen in air, 1.5 and $0.7(x10^9[cm^3(STP)cm/cm^2seccmHg]) $, respectively was higher than that of others. and Selectivity of the membrane made of PPS for oxygen to nitrogen gas in air was 2.9.

  • PDF